Viktoria Stray

Rashina Hoda

Maria Paasivaara
Philippe Kruchten (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

LNBIP 383

21st International Conference
on Agile Software Development, XP 2020
Copenhagen, Denmark, June 8-12, 2020, Proceedings

@ Springer




Lecture Notes
in Business Information Processing 383

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany
John Mylopoulos
University of Trento, Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia
Michael J. Shaw
University of lllinois, Urbana-Champaign, IL, USA
Clemens Szyperski
Microsoft Research, Redmond, WA, USA


https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911


http://www.springer.com/series/7911

Viktoria Stray - Rashina Hoda -
Maria Paasivaara - Philippe Kruchten (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

21st International Conference
on Agile Software Development, XP 2020

Copenhagen, Denmark, June 8-12, 2020
Proceedings

@ Springer



Editors
Viktoria Stray

University of Oslo
Oslo, Norway

Maria Paasivaara
IT University of Copenhagen
Copenhagen, Denmark

Rashina Hoda
Monash University
Clayton, VIC, Australia

Philippe Kruchten
University of British Columbia
Vancouver, BC, Canada

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing

ISBN 978-3-030-49391-2 ISBN 978-3-030-49392-9  (eBook)
https://doi.org/10.1007/978-3-030-49392-9

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://orcid.org/0000-0002-6032-2074
https://orcid.org/0000-0001-5147-8096
https://orcid.org/0000-0001-7451-7772
https://orcid.org/0000-0003-1359-4867
https://doi.org/10.1007/978-3-030-49392-9
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the research papers of the 21st International Conference on Agile
Software Development (XP 2020), planned to be held June 8—12 at the IT University of
Copenhagen, Denmark. However, due to the COVID-19 pandemic, the conference was
held online.

XP is the premier agile software development conference combining research and
practice. It is a unique forum where agile researchers, practitioners, thought leaders,
coaches, and trainers get together to present and discuss their most recent innovations,
research results, experiences, concerns, challenges, and trends. XP conferences provide
an informal environment to learn and trigger discussions and welcome both people new
to agile and seasoned agile practitioners.

XP 2020 marked the 21st edition of the “First Conference in Agile.” Agile continues
to advance, and the focus of the XP conference program has expanded over the years.
While the first XP conference focused on eXtreme Programming and predated the
“Agile Manifesto,” XP 2020 solicited contributions that address all modern agile
approaches, as well as the application of agile to areas including but not limited to
FinTech, AI/ML, IoT, and other mission-critical systems with global reach.

The XP 2020 conference invited submissions on 12 tracks, including research
papers, research workshops, experience reports, industry and practice, doctoral sym-
posium, education and training, on-site research, journal first, diversity and inclusion,
leadership, agile games, and lightning talks. In total, across all submission types, we
received over 300 proposals, which demonstrates that the XP community is growing
and active.

The research paper track invited submissions of unpublished high-quality research
papers, full and short, related to agile and lean software development. Submissions
addressing topics across the full spectrum of agile software development, broadly on
agile, on issues of concern to researchers or practitioners or both were welcomed.

The XP 2020 research paper track received 46 submissions. After the first screening
by the track chairs, 37 submissions were sent for peer review. Each paper was reviewed
by three members of the Program Committee. Based on the reviewer comments, 12 full
and 4 short papers were accepted for publication in these proceedings. The papers
contribute to the literature on agile research and experience, addressing a wide range of
topics, including distributed development, large-scale transformation, ethics, leader-
ship, user-centered design, and test-driven development.

We would like to extend our sincere thanks to all the people who contributed to XP
2020: the authors, reviewers, sponsors, chairs, and volunteers. Finally, we would like to
express our gratitude to the XP Conference Steering Committee and the Agile Alliance
for their ongoing support.

April 2020 Viktoria Stray
Rashina Hoda
Maria Paasivaara



Conference Chair

Maria Paasivaara

Program Co-chairs

Viktoria Stray
Rashina Hoda

Publication Chair

Philippe Kruchten

Program Committee

Noura Abbas
Scott Ambler
Craig Anslow
Hubert Baumeister
Marthe Berntzen
Jan Bosch

Frank Buschmann
Fabio Calefato
Daniela S. Cruzes
Torgeir Dingseyr

Yael Dubinsky
Jutta Eckstein
Neil Ernst

Steven Fraser
Juan Garbajosa
Eduardo Guerra
Orit Hazzan
Helena H. Olsson
Philippe Kruchten
Kati Kuusinen
Casper Lassenius
Ville Leppénen
Lech Madeyski

Michele Marchesi

Organization

Technical University of Denmark, Denmark

University of Oslo, SINTEF, Norway
Monash University, Australia

The University of British Columbia, Canada

Colorado Technical University, USA

SA+A, Canada

Victoria University of Wellington, New Zealand

Technical University of Denmark, Denmark

University of Oslo, Norway

Chalmers University of Technology, Sweden

Siemens AG, Germany

University of Bari, Italy

SINTEF, Norway

Norwegian University of Science and Technology,
Norway

StepAhead, Israel

IT Communication, Germany

University of Victoria, Canada

Innoxec, USA

Universidad Politécnica de Madrid, Spain

National Institute of Space Research, Brazil

Technion — Israel Institute of Technology, Israel

University of Malmo, Sweden

The University of British Columbia, Canada

Technical University of Denmark, Denmark

Aalto University, Finland

University of Turku, Finland

Wroclaw University of Science and Technology,
Poland

Cagliari University, Italy



viii Organization

Sabrina Marczak
Tommi Mikkonen
Alok Mishra

Nils Brede Moe
Jirgen Miinch
Ipek Ozkaya

Ken Power

Pilar Rodriguez
Darja Smite
Simone V. Spiegler
Stefan Wagner
Xiaofeng Wang
Hironori Washizaki

PUCRS, Brazil

University of Helsinki, Finland

Atilim University, Turkey

SINTEF, Norway

Reutlingen University, Germany
Carnegie Mellon University, USA
Cisco Systems, Ireland

University of Oulu, Finland

Blekinge Institute of Technology, Sweden
University of Stuttgart, Germany
University of Stuttgart, Germany

Free University of Bozen-Bolzano, Italy
Waseda University, Japan



Contents

Agile Adoption

Agile Implementation and Expansive Learning: Identifying Contradictions
and Their Resolution Using an Activity Theory Perspective . . . ... .......
Pritam Chita, Peter Cruickshank, Colin Smith, and Kendall Richards

Onboarding: How Newcomers Integrate into an Agile Project Team . . ... ..
Peggy Gregory, Diane E. Strode, Raid AlQaisi, Helen Sharp,
and Leonor Barroca

Agile Practices

Combining User-Centered Design and Lean Startup with Agile Software
Development: A Case Study of Two Agile Teams. . .. ................
Ingrid Signoretti, Larissa Salerno, Sabrina Marczak,
and Ricardo Bastos

Agile Software Development Practices and Success in Outsourced Projects:
The Moderating Role of Requirements Risk. . . ....... ... ... ... .....
Oliver Krancher

On the Use of Design Thinking: A Survey of the Brazilian Agile Software
Development COMMUNILY. . . . . oottt e e e e e
Matheus Prestes, Rafael Parizi, Sabrina Marczak, and Tayana Conte

Characterising the Quality of Behaviour Driven

Development Specifications . . .. .......c. ..
Leonard Peter Binamungu, Suzanne M. Embury,
and Nikolaos Konstantinou

“I Don’t Understand!”: Toward a Model to Evaluate the Role of User
Story Quality . . . ...
Daniel Hallmann

Large-Scale Agile

Large-Scale Agile Transformation: A Case Study of Transforming
Business, Development and Operations . . ... ......................
Nils Brede Moe and Marius Mikalsen

Improving Risk Management in a Scaled Agile Environment . . . ... ......
Eva-Maria Schon, Dirk Radtke, and Christian Jordan



X Contents

The Business of Agile

“When in Rome, Do as the Romans Do”: Cultural Barriers to Being
Agile in Distributed Teams. . . . .. ... ... .. . 145
Darja Smite, Javier Gonzalez-Huerta, and Nils Brede Moe

A Quantitative Exploration of the 9-Factor Theory: Distribution

of Leadership Roles Between Scrum Master and Agile Team. .. ......... 162
Simone V. Spiegler, Daniel Graziotin, Christoph Heinecke,
and Stefan Wagner

What an Agile Leader Does: The Group Dynamics Perspective . ......... 178
Lucas Gren and Magdalena Lindman

“This is Just a Prototype: How Ethics Are Ignored in Software

Startup-Like Environments. . . .. ... ... .. 195
Ville Vakkuri, Kai-Kristian Kemell, Marianna Jantunen,
and Pekka Abrahamsson

Hypotheses Elicitation in Early-Stage Software Startups
Based on Cognitive Mapping . . . ... ...t 211
Jorge Melegati and Xiaofeng Wang

Agile and Testing

Results from a Replicated Experiment on the Affective Reactions of Novice
Developers When Applying Test-Driven Development. . ... ............ 223
Simone Romano, Giuseppe Scanniello, Maria Teresa Baldassarre,
Davide Fucci, and Danilo Caivano

Examining the Current State of System Testing Methodologies
in Quality ASSUIANCE . . . . . o v it et et e e e e 240
Rafaela Sophocleous and Georgia M. Kapitsaki

Author Index . . .. ... .. ... . . .. e 251



Agile Adoption



®

Check for
updates

Agile Implementation and Expansive Learning:
Identifying Contradictions and Their Resolution
Using an Activity Theory Perspective

Pritam Chita® @, Peter Cruickshank @, Colin Smith®, and Kendall Richards

Edinburgh Napier University, Edinburgh, UK
p.chita@napier.ac.uk

Abstract. A key challenge organisations face when transitioning to agile deliv-
ery methods is that of quickly and effectively learning new ways of working. This
study posits that fundamental historical, cultural and behavioural aspects affect the
transition and contribute to the poor performance of many agile implementations.
In order to address such factors, this study applies a modified Activity Theory (AT)
based framework to a case study agile implementation within a large public sector
organisation. An activity is closely defined, and six generic activities associated
with all agile implementations are identified. These are validated against the agile
maturity model literature and a set of evaluation criteria of contradictions, con-
gruences and collaboration is established. Evidence is gathered from participant
interviews and the framework is used to surface learning and development obsta-
cles and issues within an expansive learning cycle. The study argues that analysis
via this modified AT framework brings original insight. Initial findings indicate
that there are relatively few learning and development issues associated with the
use of agile tools and techniques themselves and that most problems arise at the
interface where the “changed” (more agile) delivery teams meet the organisation’s
behavioural norms and practices.

Keywords: Organisational learning - Activity Theory - Expansive learning -
Contradictions - Congruences

1 Introduction

Understanding the difficulties and issues associated with agile implementations has
been problematic [8] with many varied perspectives [26], organisational settings and
approaches [18]. Previous studies [11] have highlighted the need to consider environ-
mental, behavioural and cultural dimensions when studying software development and a
recent study [10] suggested an organisational learning perspective with Activity Theory
as a useful lens for examining these elements when implementing and adapting agile
delivery practices. This paper adds to the discussion by applying an Activity Theory
(AT) based framework to evaluate organisational learning, cultural problems and issues
when implementing and adapting agile practices. It addresses the following research
questions:

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 3-19, 2020.
https://doi.org/10.1007/978-3-030-49392-9_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_1&domain=pdf
http://orcid.org/0000-0002-6525-4170
http://orcid.org/0000-0002-7687-2652
http://orcid.org/0000-0003-0362-2254
http://orcid.org/0000-0002-2594-8135
https://doi.org/10.1007/978-3-030-49392-9_1

4 P. Chita et al.

RQI: How can Activity Theory provide a structured framework to understanding
learning & development issues when implementing an agile approach?

RQ2: What insights does AT give into the learning & development issues that
predominate when an organisation transitions to an agile mode of delivery.

An Activity Theory based framework is applied to a large case study organisation
text implementing an agile approach and the focus is Engestrom’s notion of expan-
sive learning whereby learning and development within organisations progresses by
resolution of contradictions and frictions [13]. Consequently, the development and suc-
cessful take-up of agile practices will only occur as the organisation progresses through
a sequence of identification, consideration and subsequent resolution of multiple con-
tradictions. This paper posits that the identification of these contradictions and their
approaches to resolution within an expansive learning cycle provides a useful structured
framework that facilitates an original insight into the obstacles and issues that impact
agile implementations.

To achieve this objective, this paper defines an activity within an Activity Theory
context and then hierarchically deconstructs agile development activities from Agile
Manifesto principles to propose a set of six key activities that encompass agile delivery
activity. This framework is used to examine the issues that an organisation encounters as
it adopted agile delivery practices. This study uses the identification of contradictions,
their types and occurrences as well as their resolution and collaborative activity as a
structured and progressive indicator of the nature and type of learning and development
issues that organisations face in implementing agile approaches. This paper is organized
as follows. Section 2 develops an Activity Theory based framework of six generic agile
activities. Section 3 outlines the case study organisation and the research method adopted.
Section 4 details the study findings in terms of identified contradictions, congruences and
collaborative interactions that take place within the agile activities. Section 5 discusses
the results and concludes the paper.

2 Background and Related Work

Originating within the Cultural-Historical Analytical Theory (CHAT) domain, Activity
Theory (AT) provides a framework to examine many aspects of work activity and espe-
cially highlights frictions and tensions when new initiatives are developed. Chita [10]
provides a fuller account of the learning cycle within an agile development environment.
From a learning perspective, Activity Theory helps to focus on the important influence
of the environmental mix such as culture, procedures, roles, peers, policies and artifacts.

2.1 Activity Theory Based Framework

Engestrom [13] sees the unit of analysis as collective rather than individual activity [25]
and argues that the collective perspective is a useful tool for studying organisational
change and learning. Engestrom’s approach is illustrated in Fig. 1. Generic delivery
activity of a project team is shown with the focus or purpose of the activity, represented



Agile Implementation and Expansive Learning: Identifying Contradictions 5

Tools/Techniques/Resources
» Software development tools.
* Projectmanagementtools.
* Communication and coliaborationteols

t

Project i .

g Object/Purpose: Outcomes:

Delivery +—F» 0 * Delverycfrobust, * New businessfeature
Team 0 scalable, secure, & 4

capability or

maintainable working function

software.

N

RMIESZNOIMSZOIQGHISGUO" v Actors/Roles/Responsibilities
. Zcrfs 0 < >0 < » 0 *  Requirementsgathering.
* Culture - A
. *  BusinessAnalysis

* Organisational procedures Community/Stakeholders Programming
* Behaviouralnorms. . I“f’a“’_”“”" User interface design
* Common practice. *  Operations +  ProductOwner

*  Management&HR * DataArchitect

*  Businessfunction *  ScrumMaster

¢ Clients

Fig. 1. Example Project Delivery Activity (after Engestrom, [13])

by the horizontal line through the middle of the triangle from the Project Delivery Team
node (also known as Subject node) to the Object/Purpose node.

This delivery activity both mediates and is mediated (affected/influenced) by the
node representing Tools/Techniques/Resources (e.g. a story board or a work package)
which might be used as part of the activity, as well as by the Community/Stakeholders
(e.g. clients or management) context node within which the delivery activity takes place.

The relationship between the Project Delivery Team node and the Commu-
nity/Stakeholders node is mediated by the Rules/Norms/Organisation node and also the
relationship between the Community/Stakeholders node and the Object/Purpose is medi-
ated by the Actor/Roles/Responsibilities node that reflects how work and responsibilities
are divided and allocated. According to Engestrom [15] there will be contradictions and
friction within and between these nodes and also between discrete organisational activ-
ities. Allen et al. [1] taking a holistic activity system perspective, define “contradiction”
as anything that opposes the overall motive of the activity and the individual or collective
aims that the subjects (activity actors) are striving for. These contradictions occur in a
progression as the activity evolves and changes through an expansive learning process
which occurs as a series of progressive series of contradictions are resolved. The cycle
starts with Primary Contradiction that emerges as an initial trigger point from within
one of the above six nodes. A Secondary Contradiction leads to a deeper analysis by the
subjects (activity actors) with more detailed questioning and is likely to emerge between
two nodes. A Tertiary Contradiction emerges as the now evolved or changed activity
clashes with the older more established mode of operation [30]. Finally, a Quaternary
Contradiction occurs when the newly organised or more advanced activity comes up
against other organisational activities which are still expecting the interaction to be with
the previous older version of the activity.



6 P. Chita et al.

The above delivery activity represents the overall framework adopted by this study
where the focus is on the contradictions, frictions and tensions that are associated with
the activity. and this study aims to identify and discuss these and their influence on the
process of implementing agile delivery approaches.

2.2 Defining an Activity

This approach relates to the Activity Theory principle of Hierarchical Decomposition
which significantly impacts on the unit of analysis [30, 35, 37]. The AT literature mostly
refers to one or two key articles [13, 14] and as Sannino [37] points out there have been
various critiques of Engestrom’s representation of Activity Theory [13] as a conceptual
model for the analysis of social practices.

Cash et al. [9] draw extensively upon Bedny and Karwowski [6] and Bedny and
Harris [5] in their approach to building a multi-level theory applied to the engineering
design process and they ask the pertinent question, “At what scale do distinct design
activities and tasks occur and how are the various scales related?”” Cash et al. [9] also
indicate that in the design field, studies have taken place at different levels and that there
are difficulties in pulling together the implications and relationships of these studies.
This could also be said to be true of studies in IS/IT where there are extensive articles
on methods and processes as well as programming and interface design [8, 32, 38, 39]
but little that actually pulls them together into a coherent whole. Cash et al. [9] state that
“as with any technical system, the ability to describe behaviours and properties of the
system across multiple scales is essential for generating deep scientific understanding,”
and borrowing from Bedny and Karwowski [6] they arrive at an Activity — Task —
Action decomposition that differs from the conventional Activity Theory structure of
Activity — Action — Operation.

Bedny and Harris [5] identify the production process as a sequence of transformations
of raw material into a finished product and Cash et al. [9] apply this to the design process
and arrive at an illustrative diagram which has been modified below (Fig. 2) to start at

Micro Scale: Sequence of Actions linked by 2 common goal. Anexample of an action
would be updating a story board with a completed story pomt.

Meso Scale: Sequence of Tasks linked by a common motivation. An example of 2
task would be documenting a user story.

|

Macro Scale: Sequence of Activities linked by a common focus. The focus might be
the delivery of a software module an example activity might be coding an interface.

Fig. 2. Cash et al. [9] framework adapted for an agile environment.



Agile Implementation and Expansive Learning: Identifying Contradictions 7

the lowest level (Actions) to arrive at Activities at the highest level and is applied to the
agile delivery process.

For gathering research data and analytical purposes, this represents a more granular
approach to the application of AT rather than an approach that envisions the whole of the
software development process as a single activity. Applying this approach to a traditional
delivery lifecycle, one could classify each stage of the cycle as a specific activity. Such a
linear approach might well fit some development lifecycles, but most are likely to have
more than one activity either taking place simultaneously or across multiple stages.

2.3 Activities in Agile Delivery

Identification of a generic and widely applicable set of agile delivery activities was
pursued by re-visiting the twelve agile principles on which much of current agile devel-
opment activity and practice is founded. What constitutes a “principle” is open to inter-
pretation and general definitions of a principle vary from “a fundamental truth or propo-
sition that serves as the foundation for a system of belief or behaviour or for a chain
of reasoning” to “a fundamental source or basis of something” as well as “a general
scientific theorem or law” [33].

Meyer [28] posits his own set of principles which he calls a “usable list”, divided
into two groups, Organisational and Technical. This consolidates the rationale and core
concepts behind the Agile Manifesto Principles into a logical, granular and discrete list.
Supporting these principles, Meyer [29] identifies several practices that he regards as the
regular “almost ritual” activities that must be undertaken in order to be able to conform
with and apply the agile principles. Amending Meyer’s list with additional elements
(Requirements Gathering and Learning and Development) we can derive a coherent set
of agile activities that cater for the concepts underpinning the Agile Manifesto Principles
and which should support all agile delivery approaches, and which can be identified as
constituting activities within an AT context. These defined activities are depicted in
Table 1 below.

Table 1. Generic agile activities and tasks

Agile activity Description Example tasks
Development Simple and incremental Deploying coding standards
(Dev) design; coding standards and | Pair programming;

shared coding Refactoring
Release Planning, Continuous Estimation tasks
Management (RM) Integration and Configuration | Frequent/small releases

Management Configuration Management
Testing and Quality (T&Q) Test driven development and | TDD; Unit testing

all aspects of assuring Defect analysis

software capability

(continued)



8 P. Chita et al.

Table 1. (continued)

Agile activity Description Example tasks
Requirements Engineering Customer focus, gathering Customer collaboration.
(RE) and developing user stories, Manage changing
use cases etc. requirements. User story
development
Learning and Development Retrospectives for Sprint retrospectives; Training
(L&D) incremental improvement Project retrospectives
Governance and Incorporates Meyer’s Daily stand-ups
Support (G&S) management practices and Self-organised/teams
other organisational support | Development environment
elements

This identified set of activities was assembled in a draft paper and circulated amongst
senior Agile coaches and consultants within the financial services, public sector and
consulting domains in the Edinburgh (Scotland, United Kingdom) area and the feedback
to date has been positive and in general agreement with the set.

Having arrived at a defined set of activities and tasks, the initial requirement is to
evaluate these suggested activities according to published literature to provide a wider
appraisal and comparison with other perspectives that address agile delivery activities
and practices. These perspectives are most likely to be addressed in agile maturity model
literature, as it aims to align agile processes! and practices/activities either within the
traditional maturity model approaches [26] or those that define separate agile maturity
models [18]. A recent study by Fontana et al. [17] aims to evaluate “currently pro-
posed agile maturity models” and the authors identified 14 papers that were considered
important for their analysis.

This study adopted these same 14 articles as representative of the wider context and
perspectives of all elements that make up agile activities and practices and compares
them with the proposed set of generic agile activities in Table 1 above. The generic activ-
ities were found to map well to all indications of agile activities and practices mentioned
within the 14 articles. Given the wide variety of likely organisational situations, and an
Activity Theory based approach that progresses bottom up from Actions — Tasks —
Activity to arrive at an activity that consists of a number of conceptually linked tasks
with a common focus, these agile activities represent a logical, distinct and comprehen-
sive set. Within each of these agile activities and tasks, expansive learning will occur as
organisations and delivery teams face contradictions and obstacles within these activi-
ties/tasks and either adopt additional practices to resolve them or perhaps pursue them
in different ways. Therefore, each organisation will have its own view and/or hybridized
version of tasks and artifacts within each of the above six activities.

! This study views a process as a sequence of activities/practices.



Agile Implementation and Expansive Learning: Identifying Contradictions 9

2.4 Congruences and Collaborative Activity

In their analysis of technology-mediated organisational change, Allen et al. [1] introduce
the concept of “congruences” which they see as “temporary stabilization” or stabilizing
forces within an activity system, which they regard as a development that leads to balance
rather than precipitating change. In this analysis, it is important to recognize elements
that promote reproduction as well as those that give rise to change as that whilst there
will be tensions that provoke change, there are also issues related to the development of
congruences.

Through their analysis of primary and secondary contradictions, Allen et al. [1]
argue that these sources of tension give rise to an advanced form of the activity as a
result of greater congruencies within the work activity. Their analysis of case studies
revealed contradictions being offset by congruencies and through a process of feedback
and action, the contradictions were transformed into congruencies [1]. Dennehy and
Conboy [12] take up this point and note that the congruence of contradictions within and
between activities will act as drivers of change giving rise to several levels of congruency
between the different elements. The authors quote Allen et al. [2] who indicate that
these congruencies can be immediate where things work better within an activity or
give rise to longer term congruencies. The authors [12] argue that it is the congruence
of contradictions that is important in explaining the evolution and development of an
activity.

Hasan and Banna [20] indicate that innovation and the resolution of a contradiction
has to take place at the social level and cannot happen at the individual level. They
point to Bodker’s [7] work in HCI who indicates that there has to be close collaboration
and cooperation to deliver better design. Engestrom [15] and Bardram [3] have also
considered this element in their examination of collaborative activity. Engestrom et al.
[16] identified a progression of three levels of collaborative activity taking place.

Co-ordination is the “normal scripted flow of interaction” [16, p. 372] where individ-
uals will focus on their own assigned roles, objects and actions. The script may consist of
written rules and unwritten traditions and participants within the activity are coordinated
without question or discussion. In the context of a software development environment,
Barthelmess and Anderson [4] indicate that there is a lack of a community concept in
this type of collaborative activity and it may be noted that in the context of organisational
process or practice this level of activity might be that which is typically incorporated
into a traditional maturity model perspective. Progression to the co-operation level of
collaborative activity, involves actors that will instead of focusing on their assigned
roles will focus on a shared problem or object in order to find an agreed solution. Actors
(subjects) will move beyond the confines of a script but will not explicitly question or
reinterpret it. According to Bardram [3] the important difference between coordinated
and co-operative work is a shared objective and the actors have to balance their own
actions with those of their activity partners to achieve a common goal.

Finally, to achieve the co-construction level of collaborative activity, actors will
reconceptualize their roles and interactions with the shared object or problem. According
to Bardram [3] the objective (motive) of the work is not stable and has to be collectively
constructed which he calls “co-construction”. According to Engestrom et al. [16] the
script may be re-conceptualised as well as the individual’s interactions with each other.



10 P. Chita et al.

Actors will pose questions such as “What is the meaning of this problem in the first
place? Why are we trying to solve it - and who benefits from its solution? How did the
problem emerge?” [3: 9].

Barthelmess and Anderson [4] indicate that there is a close interplay between these
different levels as they are all part of “collaborative activity”” and that a pattern of dynamic
transformations between these levels can be observed. To illustrate using a software
development example, writing software might occur in a coordinated way and a devel-
oper might encounter a problem perhaps with a specification or a tool (contradiction).
This might then become a collaborative activity as the developer and business analyst
collaborate with regards to problem resolution and once resolved activity returns to a
coordinated state. Alternatively, it might be a serious problem that requires a more con-
sidered approach that involves re-thinking practice in which case the activity becomes
a co-constructive effort at which point practice is questioned and re-conceptualized and
expansive learning takes place as contradictions are resolved. The activity then returns
to the coordinated state.

In the case study organisation below, the different types and details of contradic-
tions within the agile implementation are identified in order to determine the learning
and development issues that the organisation encounters when implementing an agile
approach. The occurrence of different types of collaborative activity as pre-cursors to
expansive learning are also examined.

3 Case Organisation and Study Design

This research focuses on a single case study organisation with the intention to identify
the nature and type of contradictions, congruences and collaborative activity that has
occurred within the organisation during its adoption of the Structured Agile Framework
(SAFe) method. According to Runeson and Host [36] the case study methodology is
well suited to software engineering research and provides a deeper understanding of
the phenomena under study. The case study organisation is a large public sector body
that delivers a broad range of services. As a single body employing over 3500 people,
the organisation leverages efficiencies of scale and reduced infrastructure costs in the
delivery of its services for which the demand has grown rapidly creating many challenges
which led to the creation of the Change Programme which ran from May 2017 to April
2019.

The Programme was initiated by senior management and the IT and Programme
Support functions decided to adopt and use agile approaches in a very short space
of time leading to the rapid deployment of the SAFe framework. This represented a
major change from the waterfall and PRINCE2 based approaches previously deployed.
Given the starting point, scale, speed of implementation and the requirement to urgently
deliver value in the complex public sector environment, the Change Programme had
many significant learning and development issues. Over the two-year duration of the
Change Programme, a core group of around 100 people were involved but intermittently
this grew to nearly 200 people, divided into twelve delivery streams.

This paper presents the initial results from an analysis of semi-structured interviews
conducted so far with 13 delivery managers involved in the programme. The hour-long



Agile Implementation and Expansive Learning: Identifying Contradictions 11

interviews were with senior managers responsible for delivery streams and took place in
the period immediately after the programme ended in April through to September 2019.
The interview questions were derived from a series of previous papers that have applied
Activity Theory to case study organisations [21-23, 27, 31, 34]. Thirty-seven interview
questions were derived and were designed to be as widely applicable as possible. In
addition, illustrative diagrams were used to guide the interviewees. The NVivo (v12)
qualitative data analysis tool was used to code the interview transcripts for the occur-
rences of contradictions, congruences and collaborative activity. Interview transcripts
were also examined for statements indicating problems & issues related to the Change
Programme’s agile approach.

The interviews were conducted immediately after the Change Programme had fin-
ished and so individual’s perspectives were current and relevant. Interviewees were
forthright and open in their responses and were keen to divulge their views and per-
spectives. As the interviews were conducted at the delivery manager level, the results
are likely to reflect broader issues that concern delivery managers rather than immedi-
ate software development and build issues. Consequently, identified contradictions and
congruences such as those relating to Governance & Support, Learning & Development
activities are likely to predominate. With the programme having terminated and with
over 100 core personnel involved having returned to their core functions there was lit-
tle opportunity to engage in observational research to enable the collected data to be
triangulated.

4 Findings

The findings are structured into three sections related to contradictions, congruences
and indications of collaborative interactions. For contradictions, the type and levels
were identified and for congruences only levels could be established. For collaborative
interactions, attention focused on instances of co-operation and co-construction.

4.1 Contradictions

Instances of the four types of contradictions across all six generic agile activities are
depicted in Table 2 below; the last column indicates the number of mentions and
discussions of discrete elements within the interview transcripts.

Table 2. Contradiction frequency

Contradiction | Description Mentions
Primary Occur within the six nodes 51
Secondary Occur between the six nodes 318
Tertiary Occur between the activity and an advanced form 20
Quaternary | Occur between the activity and neighbouring activities | 53




12 P. Chita et al.

The nodes in Table 2 relate to the six points of the Activity Triangle in Fig. 1
and the “advanced form” relates to an improved version of the activity. There are few
initial tensions and contradictions within individual nodes as indicated by the relatively
few Primary Contradictions. This indicates that individuals do not experience many
issues or tensions or difficulties within nodes such as the delivery teams or the tools
and techniques per se used when implementing agile methods. The large number of
Secondary Contradictions indicate by a significant margin that most of the frictions and
tensions occur between nodes as the delivery activities evolve and more questions are
being asked. A summary of these secondary contradictions is displayed below in Table 3.

Table 3. Secondary contradictions analysis

Secondary contradiction Example description No.
Subject — Artefact Use of agile tools and techniques by delivery team 77
Subject — Rules & Norms Delivery team practices and norms 19
Subject — Div. of Labour Allocation of roles and work within delivery team 20
Community — Artefact Use of agile tools and techniques by other stakeholders 24
with an interest in the activity
Community — Rules & Norms | Organisation wide practices and norms 150
Community — Div. of Labour | Division of labour within the other stakeholders 14

Within the project delivery teams most issues revolved around the use of the agile
tools and approaches (77). Typical issues related to the understanding and deployment
of agile techniques and the mixed level of training that was provided as was illustrated
by one delivery stream manager.

“I think it would have been better if I had been trained and knew how the organi-
sation wanted to implement it. But I had other people, like I know that other people
received really good support and back-up”

To a much lesser extent, the delivery team came up against issues regards adopting
agile practice and norms compared to existing team delivery practices as illustrated by
another delivery stream manager.

“we had real difficulties because solution architects their job and title is thinking
about solutions. But of course, when you are running in an agile way you are
kind of solution agnostic until the point you have gathered all your engineering
requirements”

By far the most prevalent secondary contradictions (150) occurred beyond the deliv-
ery team, within the area involving the wider organisational groups who had a vested
interest in the delivery activity and who interfaced with the activity in terms of the organ-
isational rules, procedures and normal practices that were deployed. The magnitude of
the issue is illustrated by one delivery stream manager.



Agile Implementation and Expansive Learning: Identifying Contradictions 13

“Very simply we work in an organisation of three and a half thousand people and
there was only 200 people on an agile programme so were not, were not going to
change the way those two or two strands run in the organisation for 200 people.

The existing organisational structure continued to pose issues throughout for the
whole programme There were few Tertiary Contradictions (20) which indicates that
either there were not many tensions and frictions with moving to a more evolved version
of the agile activities and an overall willing preparedness to embrace newer approaches.
Alternatively, it could mean that the agile activities are not yet evolved to a point that
demanded the older ways needed to be abandoned. Typically, the main difficulty centered
around individuals reverting to previous ways of working as was mentioned by the
programme director.

“And then what happens is that, if you get people joining a team, they don’t get
the proper training, and then if they've got five things to manage, it’s easier for
them to default to their existing ways of working. So, I think that’s been an issue
with [...], and I would say generally an issue with SAFe and Scrum, is if you don’t
have dedicated resources, it’s really hard to make it stick, because people just get
pulled back into, you know...if the environment doesn’t change, you get pulled
back into the same ways of working”

There were far more Quaternary Contradictions (53) that occurred, and one deliv-
ery stream manager put it rather tersely: “We clashed with probably every part of the
organization”. Others indicated the repetitive nature of continually having to engage
with and educate multiple organisational elements.

“it’s harder to control because you’re bringing in business units and they’ve got
their old ways of working and they 're not necessarily motivated because they’ve
not been in the programme for a year and getting used to ways of Agile and all
that kind of thing. And so, you felt that you were having to start again, and then
again in the next increment, and again as soon as another service came on”

From the above it is apparent that different people that are engaged in different
activities are facing a variety of learning and development issues all at various stages of
the expansive learning cycle as the programme engages with a different way of working.
The least problematic area is overcoming the reluctance of individuals and organisational
units to let go of older approaches (Zertiary). The introduction and use of new tools and
techniques (Primary) and the interface that an evolved new activity (Quaternary) has
with the rest of the organisation is slightly more problematic but by far most of the
tensions and frictions and therefore learning and development opportunities relate to
where the change programme’s developing and evolving activities interface with the
rest of the organisation’s existing norms and practices (Secondary).



14 P. Chita et al.

Table 4. Generic agile activities and contradictions frequency

Generic agile activity No.
Governance and Support (G&S) 80
Release Management (RM)1 40
Learning and Development (L&D) 57
Requirements Engineering (RM) 14
Testing and Quality (T&Q) 2
Building and Coding (B&C) 4
Stream - contradictions affecting whole stream 108
Programme - contradictions affecting whole programme | 179

Of these evolving and developing activities the occurrences of tensions and frictions
is not evenly distributed across all the generic activities as illustrated in Table 4 above.
This shows programme wide contradictions dominate followed by those affecting a
single stream and then those that affect the Governance and Support (G&S) generic
agile activity. However, this may well reflect the perspectives of the senior management
individuals interviewed so far. This would also explain why Building and Coding (B&C)
and Testing and Quality (T&C) are so low.

4.2 Congruences and Stabilizations

The following table details the occurrences of Congruences and Stabilizations within
the analysis conducted so far (Table 5).

Table 5. Congruences and stabilizations occurrences

Congruences and stabilizations No.
Primary — within a node 21
Secondary — between nodes 61

Tertiary — between an activity and an advanced version | 11

Quaternary — between activity and an adjacent activity |34

As can be seen the most common occurrences of congruences are the congruences
that relate to secondary contradictions. Given that secondary contradictions emerged as
the most common in the previous analysis then the higher number of secondary con-
gruences is indicative of substantial efforts to address the contradictions. The following
quote from a delivery stream manager is indicative.



Agile Implementation and Expansive Learning: Identifying Contradictions 15

“All of the scrum event planning, retros, reviews and scrum they help support
the team. We knew we had to go to those we did go to those, they supported us,
they allowed openness so the events themselves worked very well for us. Helped
knowledge management and sharing. In relation to capacity and estimation that
was really, really good because for the first time probably we weren’t just assuming
that everybody was there all the time”

4.3 Collaborative Activity

Co-ordination activities are prevalent all the time and have not been identified as they
are not indicative of any progression towards expansive learning activity.

Table 6. Collaborative activity

Congruences and stabilizations | No.

Co-ordination — not looked for | N/A

Co-operation 36

Co-construction 6

Table 6 provides a high-level perspective indicating the presence of substantial levels
of co-operative activity which is a significant pre-cursor to expansive learning taking
place [16]. There were many illustrative examples of this such as the following:

“So, what I think it did is, the hand raisers found themselves in it and what it did
is it raised an awareness of what was possible, let’s look, here’s a way of working.
And I was one of them, I didn’t raise my hand to be in it but I found myself or the
universe found me in it, and I think it raised a kind of oh this is what’s possible,
this is really exciting.”

Examples of co-construction were very limited but there were indicators of a
supportive environment that would facilitate such activity.

“I think all my people, regardless of age or inclination, are probably full of good
ideas, but they all require different ways of getting those ideas to come out of their
mouths, so Agile will help some of them”

Identifying examples of collaborative activity simply shows at a very high level
the propensity or potential of the individuals and organisational units to make progress
along the expansive learning cycle. With the interview transcripts analysed so far, it’s
not been possible to link collaborative activity to the different levels of contradictions
and congruences, but this is a later aim of this study.



16 P. Chita et al.

5 Discussion and Conclusion

Focusing on the learning and development aspects, this study proposes an alternative
structured approach that is granular and progressive, and which helps to identify and
understand the issues that an organisation encounters when implementing agile. When
they examined the challenges facing organisations implementing agile, Gregory et al.
[19] identified seven major themes and twenty-seven sub-themes in the data collected.
The highly diverse themes ranged from organisational elements to cultural aspects to
sustainability elements to business value. Whilst a very useful list of elements there is lit-
tle likelihood of identifying inter-relationships or connective elements perhaps precisely
due to the wide diversity of the issues identified.

The analytical approach taken in the paper of viewing the issues identified within an
Activity Theory framework has been shown to provide an inter-connected context which
places these issues in a useful progressive framework. For example, anything to do with
teams whether it is team practices or recruitment relates to the subject node and issues
with teams themselves constitutes a primary contradiction. Team practices using new
approaches constitute a secondary contradiction. Organisational culture elements and
business value aspects can relate to Rules & Norms node and Distributed Teams relates
to the Division of Labour nodes. Primary contradictions will relate to issues within teams
and once they are resolved then attention will turn to secondary contradictions that occur
beyond the subject or team nodes. This offers a form of a progression of issues and the
value of the Activity Theory framework is that it places these issues within a structure
where resolution of contradictions & congruences leads onto the next step in the Expan-
sive Learning Cycle. This Activity Theory based framework identifies contradictions
at particular levels to provide a useful insight and understanding in terms of locating
where the major issues are in a progressive cycle compared to simply identifying a list
of different types of issues that the organisation faces without any context of importance
or contribution regards progress towards an organisation successfully transitioning to an
agile mode of delivery.

As evidenced by the number of occurrences of Primary Contradictions, this study
indicates that in this case, most issues do not relate to the actual use of agile tools and
techniques or even a reluctance to let go of previous ways of working as evidenced by
the relatively few occurrences of Tertiary Contradictions. The location of these contra-
dictions within the six generic agile activities facilitates a more structured and granular
approach to locating specific issues. In this study the contradictions have been mostly
concentrated around the Governance & Support tasks, though this is likely to reflect the
focus of the delivery managers interviewed. As indicated by the large number of Sec-
ondary Contradictions, the major tensions and frictions relate to the interface between
the delivery team and the rest of the organisation and its practices and behavioural norms.
This is consistent with the findings of other authors such as Gregory et al. [19] and Kuusi-
nen et al. [24]. These issues extended beyond specific agile activities and most affected
the whole programme and many related to individual delivery streams.

The findings indicate that the agile activities that experienced substantial issues were
related to Governance and Support (G&S) as well as Learning and Development (L&D)
activities. The G&S activity would be expected to be significant due to the large number
of contradictions identified that related to the interface between the delivery team and the



Agile Implementation and Expansive Learning: Identifying Contradictions 17

rest of the organisation. It could also be indicative of the management level of individuals
who have been interviewed so far. The L&D contradictions seem to be derived partially
from the mixed levels of formal training and development that was made available to
the participants although there is also evidence of substantial provision of mentoring
and support provided throughout. This presents an area for further analysis within this
study, for instance examining the reasons the organisation is less willing to fund formal
training but is willing to spend on mentoring and coaching and whether this relates to
budget holders or funding cycles.

The distribution of congruences broadly follows that of the contradictions which is
indicative of significant attempts to address and resolve the occurring contradictions.
The occurrence of collaborative interactions particularly in terms of co-construction is
extremely limited and is perhaps indicative of the limited opportunity for individuals to
reconceptualize their roles and interactions. With regards to the second research question,
this approach could indicate where learning and development issues predominate when
implementing agile an agile approach. The findings point to specific areas for further
research, particularly in the area of the impact of organisational practices and norms as
well as individual attitudes and autonomy. This study is confined to delivery managers
and further research could consider interviewing delivery personnel as well obtaining
perspectives from business units benefiting from the change initiative as well as business
functions supporting the initiative such as finance and HR.

This study has provided a framework to map defined Activity Theory concepts to
agile delivery processes. It has used the concepts of contradictions, congruences and col-
laborative interactions to suggest a structured framework to view obstacles to learning
& development encountered by organisation. With regards to the first research ques-
tion this structured, granular, generic and scalable approach provides a framework that
moves beyond a checklist approach of issue identification and the study findings should
complement existing approaches of both academics & practitioners as they examine the
issues and difficulties of implementing agile delivery methods.

References

1. Allen, D.K., Brown, A., Karanasios, S., Norman, A.: How should technology-mediated orga-
nizational change be explained? A comparison of the contributions of critical realism and
activity theory. MIS Q. 37(3), p835-p854 (2013)

2. Allen, D.K., Karanasios, S., Norman, A.: Information sharing and interoperability: the case
of major incident management. Eur. J. Inf. Syst. 23(4), 418-432 (2014). https://doi.org/10.
1057/ejis.2013.8

3. Bardram, J.: Designing for the dynamics of cooperative work activities. In: Proceedings of
the 1998 ACA4 Conference on Computer Supported Cooperative Work, Seattle Washington
(1998)

4. Barthelmess, P., Anderson, K.M.: A view of software development environments based on
activity theory. Comput. Support. Coop. Work 11, 13-37 (2002). https://doi.org/10.1023/A:
1015299228170

5. Bedny, G.Z., Harris, S.R.: The systemic-structural theory of activity: applications to the study
of human work mind. Cult. Act. 12(2), p128—p147 (2005)

6. Bedny, G.Z., Karwowski, W.: Activity theory as a basis for the study of work. Ergonomics
47(2), p134-p153 (2004)


https://doi.org/10.1057/ejis.2013.8
https://doi.org/10.1023/A:1015299228170

18 P. Chita et al.

7. Bodker, S.: Activity theory as a challenge to systems design. in information system research:
contemporary approaches and emergent traditions. In: Sanstrom, G., Nissen, H.E. (eds.)
Proceedings of the IFIP TC 8/WG 8.2 Working Conference. Elsevier

8. Boehm, B., Turner, R.: Management challenges in implementing agile processes in traditional
development organisations. IEEE Softw. 22, 30-39 (2005)

9. Cash, P, Hicks, B., Culley, S.: Activity theory as a means of multi-scale analysis of the
engineering design process a protocol study of design in practice. Des. Stud. 38, 1-32 (2015)

10. Chita, P.S.: Agile Software Development — Adoption & Maturity. in Agile Processes in
Software Engineering and Extreme Programming. XP2018

11. Dennehy, D., Conboy, K.: Going with the flow: an activity theory analysis of flow techniques
in software development. J. Syst. Softw. 133, 160-173 (2017)

12. Dennehy, D., Conboy, K.: Breaking the flow: a study of contradictions in information systems
development (ISD). Inf. Technol. People 33(2), 477-501 (2019)

13. Engestrom, Y.: Learning by Expanding: An Activity-Theoretical Approach to Developmental
Research. Cambridge University Press, Cambridge (1987)

14. Engestrom, Y.: Activity theory as a framework for analyzing and redesigning work.
Ergonomics 43(7), 960-974 (2000)

15. Engestrom, Y.: Expansive learning at work: towards an activity theoretical reconceptualiza-
tion. J. Educ. Work 14(1), p133—p156 (2001)

16. Engestrom, Y., Brown, K., Christopher, L.C., Gregory, J.: Co-ordination, cooperation and
communication in the courts: expansive transitions in legal work. In: Mind, Culture and
Activity: Seminal papers from the Laboratory of Comparative Human Cognition, p. 239
(1997)

17. Fontana, R.M., Albuquerque, R., Luz, R., Moises, A.C., Malucelli, A., Reinehr, S.: Maturity
models for agile software development: what are they? In: Larrucea, X., Santamaria, I.,
O’Connor, Rory V., Messnarz, R. (eds.) EuroSPI 2018. CCIS, vol. 896, pp. 3—14. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-97925-0_1

18. Fontana, R.M., Fontana, .M., Garbuio, P.A., Reinehr, S., Malucelli, A.: Processes versus
people: how should agile software development maturity be defined? J. Syst. Softw. 97,
140-155 (2014)

19. Gregory, P, Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges that challenge:
Engaging with agile practitioners’ concerns. Inf. Softw. Technol. 77, p92-p104 (2016)

20. Hasan, H., Banna, S.: The unit of analysis in IS theory: the case for activity. In: The Fifth
Biennial ANU Workshop on Information Systems Foundations. pp. 1-8. ANU, Canberra
(2010)

21. Jonassen, D.H., Rohrer-Murphy, L.: Activity theory as a framework for designing construc-
tivist learning environments. Educ. Technol. Res. Dev. 47(1), 61-79 (1999). https://doi.org/
10.1007/BF02299477

22. Kaptelinin, V., Nardi, B., Macaulay, C.: The Activity Checklist: A Tool for Representing the
“Space” of context. Interactions July/August (1999)

23. Korpela, M., Activity Analysis and Development in a nutshell. Handout Version 2 (1999)

24. Kuusinen, K., Gregory, P., Sharp, H., Barroca, L.: Strategies for doing agile in a non-agile
environment. In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 1-6 (2016)

25. Leonfev, AN.: Activity, Consciousness and Personality. Prentice-Hall, Englewood Cliffs
(1978)

26. Maier, A.M., Moultrie, J., Clarkson, P.J.: Assessing organizational capabilities: reviewing
and guiding the development of maturity grids. IEEE Trans. Eng. Manage. 59(1), 138-159
(2012)


https://doi.org/10.1007/978-3-319-97925-0_1
https://doi.org/10.1007/BF02299477

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

Agile Implementation and Expansive Learning: Identifying Contradictions 19

Martins, L.E.G., Daltrani, B.M.: An approach to software requirements elicitation using pre-
cepts from activity theory. In: 14 IEEE International Conference on Automated Software
Engineering, pp. 15-23 (1999)

Meyer, B.: Agile!: The Good, the Hype and the Ugly. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-319-05155-0

Meyer, B.: Agile Software Development. Online EDX course. https://www.edx.org/course/
agile-software-development. Accessed 18 Sept 2018

Mursu, A., Luukkonen, I., Toivanen, M., Korpela, M.: Activity theory in information systems
research and practice: theoretical underpinnings for an information systems development
model. Inf. Res. Inte. Electron. J. 12, 3 (2007)

Mwanza, D.: Where theory meets practice: a case for an activity theory based methodology
to guide computer systems design. In: Proceedings of Interact 2001: Eighth IFIP TC 13
Conference on Human-Computer Interaction, Tokyo, Japan (2001)

Newell, S., Galliers, R.D.: Facilitating — or inhibiting — knowing in practice. Eur. J. Inf. Syst.
15, p441-p445 (2006)

Oxford dictionaries. https://en.oxforddictionaries.com/definition/principle

Quek, A., Shah, H.: A comparative survey of activity-based methods for information systems
development. ICEIS 5, 221-232 (2004)

Roth, W.M.: On the inclusion of emotion, identity and ethico-moral dimensions of actions. In:
Sannino, A., Daniels, H., Gutierrez, K. (eds.) Learning and Expanding with Activity Theory.
Cambridge University Press, Cambridge (2009)

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14, 131 (2009). https://doi.org/10.1007/s10664-008-9102-8
Sannino, A.: Activity theory as an activist and interventionist theory. Theory Psychol. 21(5),
p571-p597 (2011)

Sauer, C., Horner, B.H.: Rethinking IT project management: evidence of a new mindset and
its implications. Int. J. Project Manage. 27, 182-193 (2009)

Uden, L., Valderas, P., Pastor, O.: An activity theory based model to analyse web application
requirements. Inf. Res. 13(2), 13-24 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1007/978-3-319-05155-0
https://www.edx.org/course/agile-software-development
https://en.oxforddictionaries.com/definition/principle
https://doi.org/10.1007/s10664-008-9102-8
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Onboarding: How Newcomers Integrate
into an Agile Project Team

Peggy Gregory! ™ @, Diane E. Strode? ®, Raid AlQaisi®, Helen Sharp*®,

and Leonor Barroca*

1 University of Central Lancashire, Preston, UK
ajgregory@uclan.ac.uk
2 Whitireia Polytechnic, Wellington, New Zealand
diane.strode@whitireia.ac.nz
3 Independent Researcher, Glasgow, UK
r.algaisi@gmail.com
4 The Open University, Milton Keynes, UK
{helen.sharp, leonor.barroca}@open.ac.uk

Abstract. Although a stable team is deemed optimal for agile project success,
new team members need to join ongoing agile projects. Newcomers must rapidly
assimilate into the organisational and project environment while learning how to
contribute effectively to the project and integrate into the team without seriously
interrupting project progress. This paper addresses how newcomers integrate into
an established agile project team and the challenges newcomers and the team face
during this process. This paper is a single case study of a co-located agile project
team in a large IT department who regularly onboard inexperienced newcomers.
We found a mixture of traditional onboarding practices and specific agile practices
contribute to the onboarding process. Onboarding challenges include empower-
ment and mindset change, accommodating part-timers, conveying agile principles,
and adjusting to changes in team composition.

Keywords: Agile team onboarding - Onboarding - Newcomers - Scrum -
Self-organizing team onboarding

1 Introduction

Software development is a knowledge-intensive activity that relies on people with
advanced technical knowledge, skills, experience, and domain knowledge. To organise
software development, the commonly accepted approach is to adopt the mindset, process,
and practices of agile software development. Agile software development is currently
used in co-located, distributed, and large-scale systems development projects [1, 2], and
within these environments, agile development optimally occurs in self-organising teams
that are autonomous, cross-functional, and self-improving [3]. Newcomers to these envi-
ronments face challenges in becoming fully integrated and productive team members.
The challenges involve acquiring organisational knowledge, project knowledge, product

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 20-36, 2020.
https://doi.org/10.1007/978-3-030-49392-9_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_2&domain=pdf
http://orcid.org/0000-0001-7891-6666
http://orcid.org/0000-0002-8419-592X
http://orcid.org/0000-0003-4376-1734
http://orcid.org/0000-0002-6054-5366
https://doi.org/10.1007/978-3-030-49392-9_2

Onboarding: How Newcomers Integrate into an Agile Project Team 21

and domain knowledge, knowledge of the technical environment, as well as understand-
ing and becoming proficient in the agile approach used by the team, and undergoing
socialization into a self-organising team environment [4].

Onboarding is the term used to describe new employees joining and integrating into
an organisation. There is extensive literature on onboarding in organisations extend-
ing back to the 1970s [5, 6], and significant research into onboarding in Open Source
Software Development projects [7, 8], as well as literature on onboarding in software
development organisations [9]. There is a dearth of research into onboarding into co-
located agile software development project teams with a single paper indicating that
certain agile practices contribute to onboarding [4]. Onboarding was raised as a con-
cern by practitioners in an international research-practitioner workshop in 2019 [10].
Practitioners are also concerned with sustaining successful agile project teams [11], and
integrating newcomers is a factor in achieving long-term sustainability.

We expect onboarding into agile project teams will be similar in some respects to
organisational onboarding in general, but also different to traditional onboarding because
of the need for newcomers to understand the agile mindset, process, and practices and to
effectively integrate into projects where self-organising teamwork is the norm. Therefore,
we sought to understand the onboarding experiences of newcomers and their colleagues,
into an ongoing co-located agile software development project team, how newcomers
are integrated and how they learn the unique agile approach of the team. This study
addresses the question: How do newcomers integrate into an ongoing agile project team
and learn the agile approach? To address this question, we undertook a single case
study of a co-located agile project team in a large IT department who regularly onboard
inexperienced newcomers. We found a mixture of traditional onboarding practices and
specific agile practices contribute to the onboarding process and several challenges occur
for newcomers and established team members.

This paper is organised as follows. We first review pertinent literature on onboarding
and describe Bauer’s framework [12], which we used to frame our analysis. Our case
study method is described followed by our findings. The findings include a description
of the agile project team, an analysis of the onboarding practices both agile-related and
traditional, and an analysis of the key issues in onboarding for this team. A discussion
of our contributions follows with a conclusion that includes ideas for future work.

2 Background

“Organizational socialization, or onboarding, is a process through which new
employees move from being organizational outsiders to becoming organizational
insiders. Onboarding refers to the process that helps new employees learn the
knowledge, skills, and behaviors they need to succeed in their new organizations”
[5, p. 51].

In onboarding, a central idea is that of the newcomer. A newcomer is a new staff
member joining an organisation. Newcomers also include people moving within the
organisation, for example from one department to another or from one team to another.
These people are organisational insiders, although not yet team insiders.



22 P. Gregory et al.

Onboarding literature emerged in the field of organisation studies in the 1970s when
Maanen and Schein [6] defined the concepts of organisational socialisation, newcomers,
insiders, and outsiders. Their idea was that organisations have functional, hierarchical,
and inclusionary boundaries that newcomers cross as they are socialized from being
outsiders to become insiders. Socialisation has six inter-related dimensions [6, p. 37]
(the comments in brackets are our explanations).

1. Collective vs. individual socialization processes (join as a group or individually)
Formal vs. informal socialization processes (formal training or experiential learning)

3. Sequential vs. random steps in the socialization process (formal hierarchy of
achievements or ad hoc, ambiguous achievement requirements)

4. Fixed vs. variable socialization processes (timetabled steps or no scheduled steps)

Serial vs. disjunctive socialization processes (role models or no role models)

6. Investiture vs. divestiture socialization processes (build on a person’s skills, values,
attitudes or rebuild the person to fit the organisation)

e

Onboarding in commercial software development organisations was studied by
Sharma and Stol [9]. After a review of empirical studies, these authors found nine studies
of onboarding in software development organisations. They developed and tested a the-
oretical model of the relationship between onboarding activities (orientation, training,
and support), onboarding success, organisational fit (job satisfaction and workplace rela-
tionship quality) and turnover intention. One key result was that orientation and support
are strongly related to onboarding success.

Britto, Cruzes, Smite and Sablis [13] report a study of onboarding in three cases
of globally distributed legacy software development, using the onboarding framework
of Bauer [12] (described below). One key finding was that the greatest challenge was
onboarding remote developers to an ongoing project when agile methods were fol-
lowed because of the minimal documentation and the need for continuous dialogue with
mentors to understand the project.

Onboarding in co-located agile project teams is addressed by Buchan, MacDonell,
and Yang [4]. From an initial systematic literature survey, they identified 11 goals in
the general software development literature that they determined were also relevant for
agile onboarding (adapted from [4, p.3]).

Understand and fit with company culture

Understand and fit with team norms

Understand and meet others’ expectations and one’s own role’s responsibilities.
Understand the responsibilities, expertise and authority of other team members
Understand what work to do and when

Understand how to code and test to the team’s expectations

Understand the team’s standards of team quality

Understand and adopt the agile mindset

Know how to use agile artefacts and techniques used by the rest of the team
Understand the short, medium and long-term work structures, aims and implications
Understand the product/project domain knowledge and terminology



Onboarding: How Newcomers Integrate into an Agile Project Team 23

This research reported 24 techniques for onboarding [4] and found that, among
many traditional onboarding techniques such as access to formal training and access
to online communities, the following agile practices contributed to onboarding: simple
task, pair programming, retrospectives, and stand-up meetings. Due to the small number
of research participants, 11 interviews in different organisations in New Zealand, these
researchers acknowledged their list of onboarding techniques is unlikely to be exhaustive.

2.1 Bauer’s Onboarding Framework

To frame the onboarding processes discussed in this paper we used the six functions
described in Bauer’s framework for successful onboarding [5, 12]. Bauer’s framework
is generic to all onboarding environments and situations. We selected this framework to
structure our study because it is empirically based, highly cited in many fields, and cur-
rently no substantial framework or model exists for agile software development project
team onboarding. The six functions in Bauer’s framework [12] are as follows:

e Recruiting process — The process that provides information to newcomers and helps
them form realistic expectations of the organisation and their role. The recruiting
process can be separate from the onboarding process but has been shown to be more
effective if integrated into onboarding.

e Orientation — The process of helping newcomers to understand the important aspects
of their jobs and of the organisation including the organisation’s culture, values, goals,
history, and power structure. Orientation includes formal face-to-face, written guide-
lines, and online programmes for providing key information to newcomers. Orien-
tation includes socialization, which involves making newcomers feel welcome by
introducing them to co-workers and other people in the organisation.

e Support tools and processes — Support tools include a written onboarding plan for
newcomers that includes timelines, goals, responsibilities, support systems, and how
to access assistance. Attending regular meetings with a variety of stakeholders within
the organisation is a mechanism for support of newcomers. Online support tools are
another mechanism for onboarding but have been shown to be somewhat less effective
than regular face-to-face orientation sessions.

e Coaching and support — Coaching, mentoring, and having role models are mech-
anisms for helping newcomers learn about the organisation and their role, and to
navigate the social and political aspects of the organisation. Coaching and mentoring
can be external or internally sourced. Using mentors is shown to improve newcomer
knowledge of the organisation.

e Training — Training includes learning hard, soft, and onboarding skills. Training can
be informal (learning-on-the-job) or formal (mandatory scheduled courses).

e Feedback tools — Feedback and guidance provide newcomers with information on
progress, strengths, and weaknesses. Feedback can be formal (e.g. performance
appraisals) and informal (e.g. the newcomer is proactive in asking questions about the
expectations and evaluations of co-workers and supervisors).



24 P. Gregory et al.

Bauer’s [12] framework also includes adjustments that newcomers move through
during onboarding. These adjustments are self-efficacy, role clarity, social integration,
and knowledge of the culture. We have restricted our study to the six features in the
framework because evaluating adjustments requires longitudinal research.

3 Method

An organisation approached our research group and asked for assistance in identifying
how to help new team members shift from an individual view of working to a team-
oriented view of working when they joined an agile team for the first time. A single
case study was selected as an appropriate method for addressing the research question
with the unit of analysis being the co-located agile software development team [14]. The
University of Central Lancashire gave ethical approval for the research.

The data was collected primarily by interviews. All people in the project team were
asked if they would agree to be interviewed and were provided with an information
sheet about the research. More than half of the project team were interviewed. The set of
interviews covers a range of newcomers — new hires and those who had worked for up
to a year in the project team — and insiders — established team members who had worked
for 1 year or more in the project team and included the Team Lead/Scrum master — who
had the longest experience in the project team.

Initial meetings and observations occurred in October 2018 followed by interviews
and observations of the workplace in November and December 2018. Two researchers
carried out the interviews. The interviews were semi-structured and followed an inter-
view schedule, but the interviewers strived to remain open to new ideas and probed
for additional information when necessary or relevant to the topic. All interviews were
transcribed, and then analysed using the NVIVO tool. Table 1 shows the profile of the
interviewees.

Observations of daily work and specific meetings were undertaken to get to know
team members, observe how the team worked and aspects of team culture, and to identify
problems. Observations were recorded with field notes during and immediately following
the observation session.

The interview transcripts were initially coded by the first author for themes related
to onboarding approaches, practices and challenges, following the coding guidelines of
Saldana [15]. The data was also analysed to understand the team’s history, work practices
(both social practices and agile practices), and the organisation and team culture. Once
this was complete the first and second author mapped the onboarding approach and
practice themes to the six functions in Bauer’s framework [12], described in Sect. 2.1. The
second author then further analysed the themes to separate agile-related and traditional
approaches. All authors reviewed the final analysis, and a draft of the paper was shared
with the research participants for review and discussion before submission.



Onboarding: How Newcomers Integrate into an Agile Project Team

Table 1. Profile of interviewees

25

Role and code name Work Mode | Duration in role | Experience
Team lead; Scrum master FT 10 years Degree; Certified Scrum
[TL] Perm Master
Prior development and agile
experience
Assistant project manager FT 6 years Degree
[PM] Perm 4.5 yr as a student then
employed FT
No prior agile experience
Software developer 1 FT 5 years Degree
[SD1] Perm 4 yr as a student then
employed FT
No prior agile experience
Software developer 2 FT 1 year Degree
[SD2] Perm 3.5 years prior development
experience Prior agile
experience
Software developer 3 FT 1 year Degree
[SD3] Perm Prior development
experience
prior agile experience
Apprentice developer PT 8 months Studying
[NCT1] Temp No prior development
experience
No prior agile experience
Student developer PT 4 months Studying
[NC2] Temp Minimal prior development
experience
No agile experience
Software developer PT 3 months Degree
[NC3] Temp prior agile and development
experience
3 yrs at the university in
another section
Conversation specialist PT Temp 3 months Degree
[NC4] No prior development
experience
No prior agile experience




26 P. Gregory et al.
4 Findings

4.1 The History and Nature of the Agile Team

The agile software development team was a unit based in a UK university within the IT
services section (ISS). Over six years, the unit increased from two members at inception
to 15 at the time of the study. During the case study, the unit acted as a single team
following a whole-team approach regardless of how many staff they had. The unit’s
remit was to develop mobile applications for the university and investigate ideas and
technology for future innovation. The unit worked on new projects and maintained
deployed apps and systems.

Team membership and size changed depending on workload, consisting of full-time,
part-time, experienced, inexperienced, student, and apprentice members. At the time of
this study, there were 6 full-time staff, 3 apprentices and 6 part-time staff. Of the part-time
staff 3 had full-time roles within the university and were part-time in this team. The team
lead was full-time and had a duel role as Scrum Master and line manager. Apprentices
worked full-time for most weeks but attended block courses, typically for one week per
month, at their home institute. Student team members usually studied at the university
while working part-time on the project team, typically for 2 or 3 mornings or afternoons
per week. Most of the team were in their 20 s with little or no previous work experience
except the Scrum Master, Product Owner and Conversation Specialist who were in the
35-55 age group and had a range of previous experience. Many of the full-time staff
had started as part-time students and gained full-time posts as new graduates. There was
regular staff turnover as students and apprentices left after graduating, and full-time staff
were often attracted by jobs outside Higher Education.

The team developed their use of agile methods over time. In the early days, agile
use was not systematic “when I first started work, we were quite a small team, and we
didn’t follow any methodology strictly, it was a bit ad hoc almost. We did follow the idea
of sprints and some tokens of agile but not the sort of full beast that it is. It’s only once
the team has grown that we have scaled up our utilisation of agile” [SD1].

The team worked in an open-plan office space with an adjacent meeting room. The
developers used a hot-desk system and often changed the configuration of their desks to
suit themselves. The team used a Scrum approach, running two-week sprints, with the
last Friday a non-Sprint day used to complete other work. The team had daily stand-ups,
sprint planning, sprint refinement, sprint review, and retrospective meetings, product
demos and used a Scrum wallboard. The Team Lead held weekly one-to-one meetings
with staff if they wanted it. The team was functioning well. The general feeling among the
team was stated by a staff member who had been with the team for a year, “Personally,
I love it. It’s very relaxed. It’s quite dynamic, the way we do things. It’s just a nice
workplace” [SD1].

4.2 Onboarding Practices

The team’s onboarding practices are described in the following sections, organised
according to Bauer’s framework [12]. Note that all names are pseudonyms.



Onboarding: How Newcomers Integrate into an Agile Project Team 27

Recruiting Process

The recruitment process was formal and standardized for all staff who join the organisa-
tion. The process is mandated by the organisation and requires a job description, person
specification, and advertisement. The process differs for full-time (usually permanent)
and part-time (usually temporary students and apprentices) newcomers. The recruitment
of full-time staff is formal and requires a trained balanced panel of interviewers, appli-
cations are evaluated using a scoring mechanism, and applicants are interviewed using
standard interview questions. All applicants are expected to show evidence of creativ-
ity, enthusiasm, and hard work. Experience and technical knowledge are expected of
full-time applicants whereas for student and apprentice applicants this is not expected.
Once hired, full-time members get an institutional induction. Both full-time and part-
time members get a personal welcome from the Team Leader and are assigned a mentor.
There is also a Scrum Coach to help newcomers.

Long-term recruitment: The unit had a long-term recruitment approach that involved
hiring temporary students and apprentices who would work within the team as part-time
employees whilst completing their studies. In some cases, these people would finish
their degree and then become full-time permanent staff members on the project. This
approach provided permanent staff who required minimal onboarding because they had
a pre-existing good team fit, and understood the organisation, the unit’s goals, products,
technologies, stakeholders, and the teams’ agile approach.

Onboarding during recruitment: During recruitment interviews, newcomer’s knowl-
edge gaps began to be identified. “One of the things I do is in the interviews when we
take people on, I try to understand what their understanding of agile is, to see how much
of a gap thereis ...” [TL].

Orientation

“New staff” pack: This document described things that new employees need to know
and was given to all newcomers. This was described by one team member, “Here’s
everything you need to know about the team,” [PM]. The lack of detail about the team’s
approach to agile was acknowledged as a missing element “... there’s no formal element.
There should be. I'll hold my hands up and go, there should be.” [PM].

“How our team works” pack: This document is given to newcomers. The document
describes the project team members and explains what newcomers need to sign up to,
how to get into TFS (Team Foundation Server™) and explains how the team works.

“How our team works with the client” pack: This document is sent to clients before
they work with the team. The document explains how the team writes user stories, what
client communication the team expects, and how the team tests and signs-off products.
This document is also given to newcomers to provide an overview of team practices.

Agile method pack: The Team Lead informed the newcomers about agile practices
by sending them a guide, “New team members, I now send them a guide, the principles
behind it. A Scrum Guide. I talk about the fact that this is what they do” [TL].

Socialising: The project team made efforts to socialise with and get to know one
another because they found this helped newcomers to trust the team and be more confident
in interacting and communicating with one another. “For example, practices that we’ve
encouraged in our full-time team meeting, we’ll say ‘what can you present to the team
that you think is valuable or about yourself?’, you know breaking down those barriers,




28 P. Gregory et al.

it could be about anything. So [a team member] recently did one about e-capture and
[another team member] did one about his passion for Rubik’s Cubes” [TL]. The whole
team was invited to social events, “the different team members will often be going for
lunch, that sort of thing. The odd evening here or there, we’d be going for drinks in town
or we do our own team Christmas thing...” [SD3].

Support Tools and Processes

Information radiator: The project team used a Scrum/Kanban wallboard with physical
and virtual versions, although they tended to prefer the physical board. The established
members saw the physical board as useful also for newcomers, “Sometimes the team
don’t necessarily engage quite as much with a digital thing as with a physical thing, it
seems to be a bit more natural...l think it helps [the newcomers] as well because it’s a
more instantaneous way to look and see where things are.”[SD1]. The wallboard was
viewed by one newcomer as useful for developers but not for him as an architect, “it’s
all development tasks that are on the board... now. But then, my work is stuff that just
supports all of that, and sometimes it’s like, I want to write a story that is... ‘As an
architect, I want’” [NC3].

Communication tools: The team used communication tools including Teams, Slack,
TFES, and email. These tools helped the part-time newcomers to some extent, although
there was often quite a lot of missing information to catch up on during an absence, so
part-timers also walked around the room to talk to people.

Coaching and Support

Mentoring: Mentoring was viewed as an important part of the onboarding experience
for most newcomers. The Team Lead was frequently mentioned as a mentor but he also
recognised the mentoring role of the established team members, “‘from my perspective the
mentoring aspect of things, it helps both with the integration into the unit, the integration
with the technology stack and the integration into the agile way, and it’s kind of almost
subliminal. The messages come across from the team members rather than from me,
which, I hope, [the newcomer] would learn better because of that” [TL].

Role modelling: The more experienced team members noted that role modelling
desired behaviours was beneficial for the newcomer and the established staff, “I try and
get rid of the stigma ... and set an example, and the rest of the team will realise that it’s
fine to say ‘I don’t know how to do that. I don’t know what this is or that is, or I need
help with this’” [SD3]. Another type of role modelling was shown by the continuous
self-learning of new technologies by the established staff, “I do a lot of learning outside
of work at the moment, especially with all the new stuff that we’re doing” [PM].

Ceremonies: As part of the immersion approach, ceremonies were explained to
newcomers the first time they attended. For example, just before the stand-up meeting,
a newcomer would have the process explained so they knew what they were expected
to do, “they were very good at explaining everything they did, explaining why they had
stand-ups in the morning, and explain the meetings, you know, before and the end of the
sprints. They explained that before they happened” [NC4].

Encouraging teamwork: The established team members encouraged knowledge shar-
ing and helping behaviours among the team, “everyone is very friendly, and ask if you
want anything and yeah, you are encouraged to talk to people.” [NC3]. The level of




Onboarding: How Newcomers Integrate into an Agile Project Team 29

trust between newcomers and established staff was perceived as good, “There’s a lot of
trust... especially with the student developers as well, there’s a lot of trust for them to
do work, ... once they’re part of the team, and they fit and work as part of the team, we
trust them to do work”. “Everyone is very helpful, very friendly... it feels very inclusive,
very inclusive, it’s not sort-of developers and non-developers” [NC3].

Encouraging learning: One newcomer appreciated being encouraged to try new
things, “[The TL] is very good at encouraging you to take on more challenging things.
... He’ll suggest, why doesn’t [Sally] do that, why don’t you do that [Sally]? Initially,
I'll go ohhh (shouting in confusion and panic!) and then... But in a good way, it is good
to push your staff; isn’tit? It is good to learn new things and yeah. Yeah, it is good. Scary
but good. Good scary” [NC3].

Empathy: Because some established team members had previously been student
members in the team, they could still recall their own experiences and this helped them
to understand newcomers issues, “I’d like to think anyway, that we treat the students,
especially with my background as a student developer, that we're all treated as equals.
We don’t really have the junior developer syndrome that some teams suffer from where
they’re handed lesser tasks or things like that. ...Sometimes if a part-time student is only
in for 3 h or something, then there might be a situation where we might suggest things
for them, just to maximise that time that they have. But it’s more for their benefit because
I know how frustrating it is to get into a piece of work and then have to down tools and
go to lectures” [SD1].

Pair programming: The Team Lead recognised that pair programming was useful to
support newcomers. “When they first come in, I pair them up with a full-time member ...
the same full-time member for about 2 to 3 weeks until we then release them to work on
their own on a particular area.” [TL]. Pairing was also used to learn new technologies,
“Where we want skills on a particular technology or something like that we’ll pair up,
or equally if we want to teach someone something we’ll pair up” [SD1].

Reimagining yourself: The Team Lead encouraged the newcomers to reimagine
themselves in their new role, “when I've taken students on and they’ve transitioned to
being full-time members of staff, I've tried to coach them to say you need to reimagine
yourself in the new role. So [newcomer]..., she was an administrator but now she’s a,
well technically her title is [new role], but that’s actually different to what she does and
she’s had to reimage herself in those new roles because she’s no longer doing the roles
that she was doing earlier on” [TL].

Daily stand-up meetings: These meetings were held sometimes twice a day for the
benefit of the part-time staff. One developer, with one year of experience on the team,
saw the stand-ups as useful for understanding the project status and as a time for getting
help, “If you're stuck on something, don’t know how to do something or you're just
lost, then it’s a good place to air that and usually, somebody will, oh I’ll help you with
that.” [SD3]. One newcomer noted that she did not yet understand the language, “If I
understood their language, then I would probably understand more” [NC3]. Established
members also saw that stand-ups helped newcomers. “A lot of the communication comes
at the stand-up in the morning... We also have another, sometimes, in the afternoon if
someone’s come in just to get them on board. So we might have two stand-ups” [SD2].




30 P. Gregory et al.

Co-location: Co-location made asking for help and sharing knowledge easier,
“...look at this code, or something like that but also, just asking the person you're
sat next to... If you don’t know something, there’s a good chance the person next to
you does” [SD3]. Co-location allowed for conversations to be overheard, which helped
newcomers, “It does [give a] general sense of what other people doing, even if it’s just
overhearing them have, talking between themselves” [NCI].

Signalling: To signal availability and issues the team had developed methods of com-
municating so members could understand who could be interrupted and who preferred
to focus on their work, or if there was an important issue for the team to address. “Some-
times members of the team will wear headphones when they’re really concentrating so
you know to stay clear, or you just from intuition just by knowing each other...And I
think we’re all accessible to part-time students as well”. “if it’s a particular barrier in
terms of the project, then we have little red notices that go on the Kanban board...so
that everyone knows there is a barrier and if anyone has a solution ... we can discuss
and try to break that barrier down” [SDI].

Training

Formal training: No formal training was available for full-time members of staff due to
budget restrictions. In addition, most of the project team were not able to attend Agile
Conferences or other external events due to the heavy workload. No formal courses were
mentioned, but students and apprentices already attended formal courses of study.

Immersion: (or experiential learning) Newcomers started working in the team from
their first day and much of the learning and socialisation was accomplished by being a
productive member of the team. For example, two of the established members described
the process in a similar way as, “Generally we try to let them get their hands into a piece
of work, learn literally on the job, so we give them a sort of induction into what their
sort of expectations are in the team, what they can do to get support and all that kind of
stuff and just let them loose and fit right in” [PM]. A newcomer’s perception reinforced
this, “I was very much thrown in at the deep end, “Here are some meetings. Yeah, let’s
go ahead with it,” and very much learning on a day-to-day basis with the team how
they do it”. “it’s really largely practice, or very practical, with some explanations when
necessary... before we went into the meeting and we were voting with our animal cards
and things, that was explained to me before we went in, we do this, so... I got in there
and wasn’t surprised by what happened” [NC3].

Self-study: Newcomers who were not aware of agile methods were asked to read
about it before starting with the team and were given links to online resources. “In the
interviews, we tend to ask them if they have any experience of agile, and if they say no,
we say, ‘That’s fine, but we recommend you look into it’” [PM]. The existing project
team expected newcomers to self-learn and would request them to do so, “when we took
him on, we said ‘you need to do some learning outside of work if you want to continue
with the team’” [TL]. For some newcomers, the self-study was self-motivated, “I did a
lot of background work ...I did lots of reading [about Alexa] on the internet... A couple
of courses on Udemy ...At home, I am doing Python and Excel, I am doing a course on
Excel. And ... I have just signed up for, ... user stories” [NC4].



Onboarding: How Newcomers Integrate into an Agile Project Team 31

Feedback Tools

One-to-Ones: Full-time members of the team had regular, often weekly, one-to-one
meetings with the team lead. This gave team members a chance to receive guidance
about technical issues and reflect on their work practice.

Immediate feedback: The team was able to provide face-to-face feedback, as a new-
comer explained after the testing of her work, “people do point things out, but in an ok
way... but it is always nicely done”. [NC3].

Meetings: Meetings were used to communicate university, department, and team
knowledge and concerns. “everyone gets to say something in there. That’s working quite
well. It’s nice and relaxed. It’s breaking down some barriers. People are understanding
people better, and new learning is coming into the team.” [TL]

Code reviews: Code reviews were used for providing feedback, “We do a group code
review each week to see what we’ve been going over, to learn off each other. That meeting
is primarily just for the programmers and the apprentices” [SD2]. A newcomer, who
had not yet presented at a code review, thought the code reviews useful, “Af the moment
I don’t quite understand everything. But it is useful because it can be quite scary to have
a look at the [code], it makes it a bit more familiar” [NCI].

Testing: Unit tests were viewed as a feedback mechanism and some test-driven
development was used during pair programming to assist newcomers, “We do try pair
programming, especially with the students... so, when [Martin] started, we actually
added some testing-driven development with him to introduce him to what we 're working
on, how we work” [SD2]. A newcomer explained, “which is really good, because that
extra bit of testing is, and then I can see whether it does what I hoped it will do and if it
works” [NC3].

Retrospectives: Retrospectives were used to adjust and improve the agile process,
the established team members viewed them as a valuable feedback tool. “We do it at the
retrospectives or we give feedback on how we did, what we liked, what we’d improve.
So that’s more feedback as a team” [SD2].

Sprint review: Feedback at the sprint review was concerned with the technical mat-
ters, “Feedback’s generally kept back for the sprint review, so before a retro, we do a
review session where we demo the build. Hopefully, it works and we can celebrate, or
there will be some critique about the way it’s been implemented or the design choices,
or that kind of stuff” [SD1].

Sprint refinements: The team used these sessions to discuss and refine user stories
before sprint planning sessions. “We have Sprint refinements before we do a planning,
where we go through each of the work items and ask a lot of questions” [SD3].

Small tasks: Smaller tasks were given to part-time newcomers for practical reasons.
“We’ll give smaller tasks to the students because there’s just not enough time... if we’ve
got a small user story, say, getting the next timetable event from an API, that’s something
that we could see a student doing” [SD2]. Minor bug fixes were often an entry point
for newcomers, “I’ll have like a list of bugs that need fixing because generally, we don’t
want to pull the full-timers out of sprint.” [PM].

Task allocation: A mixture of self-selection and supervisor selection was used for
task allocation. Considerations of expertise were a factor in allocating tasks. “On the
bigger tasks, sometimes [TL] will delegate who to do that ... But usually, we just pick




32 P. Gregory et al.

up the next task on the board. If there’s no task on the board, then we have to ask [the
administrator] or [TL] to bring it in or liaise with the product owner...” [SD2].
Product demo: Feedback on the product was given by Product Owners to the team,
“Other bits [of feedback] will be demos to the business. So, as developers, we try to talk
to the actual product owners quite regularly” [SDI].
The findings from the analysis are summarised in Table 2.

Table 2. Summary of findings

Onboarding

Traditional

Agile-related

Recruiting process

Follow legal recruitment
requirements
Long-term recruitment

Evaluate agile knowledge and
give resources

Orientation

Provide new staff pack
Provide teamwork pack
Socialise with newcomers

Provide agile fundamentals
pack

Support tools and processes

Introduce all communication
tools

Introduce and use an
information radiator

Coaching and support

Mentoring
Role-modelling
Encourage learning

Ceremonies — explain just prior
Encourage teamwork
Pair programming

Empathy Stand-ups
Reimaging Co-locate
Signalling
Training Offer formal courses, training, | Immersion from day one
and conferences on relevant Self-study
topics
Feedback tools One-on-ones with senior staff | Code reviews

Immediate feedback during
immersion

Meetings — encourage staff to
speak

Small tasks

Testing
Retrospectives
Sprint review
Sprint refinements
Task allocation

4.3 Onboarding Challenges for the Newcomers and the Agile Project Team

Onboarding challenged newcomers and established team members. Challenges identi-
fied in the analysis included empowerment, mindset change, accommodating part-timers,
conveying agile principles, and adjusting to changes in team composition.
Empowerment: was a constant issue within the team. The Team Lead identified a dif-
ficulty with onboarding younger newcomers who had never worked in a self-organising
empowered team. He thought they needed to be helped, “when they’re just out of uni-
versity and they’ve come from an academic background that doesn’t teach team work



Onboarding: How Newcomers Integrate into an Agile Project Team 33

very well, doesn’t teach about empowerment ... sometimes in conversations, they may
turn to me in terms of a position of authority and I’'m like, no you go and do that, so
I've tried to set up things where they have their own meetings and they run their own
meetings so I may well initiate something and step out and say well there you go, you
don’t need to talk to me anymore, just sort it out yourselves.” [TL]. However, at times
of pressure, a command-and-control approach did emerge, “and then I'll pull someone
out of sprint and go, “This needs fixing,” or I'll say, “This will be fixed at the end of the
sprint, depending on how urgent it is” [PM].

Mindset change: Project team members tended to rely on senior staff to maintain
their agile processes, “If me or [the TL] aren’t in the office, stand-ups don’t happen, and
so we’re really trying to encourage, ‘This is your meeting, this is for you to help each
other’” [PM]. A constant effort was made to empower newcomers, “We try to leave it
down to them what they want to do” [SD1I]. Related to the issue with empowerment,
is the problem of perfectionism. Newcomers found it hard to adopt an experimental
mindset, “Because they’re so new, they also don’t understand how to tackle problems.
It’s a case of, ‘well just start, just get started it doesn’t matter if you throw it all away’
... it’s a mindset thing about trying to find the perfect solution the first time you do it”
[TL].

Accommodating part-timers: A recurrent theme among the team was connecting
with, and sharing knowledge with, the part-time newcomers. Both established members
and part-time newcomers saw this as an issue, “...for part-time members or [those] who
can’t attend, and it’s probably trying to find ways of bridging the gap in the commu-
nications that occur. So, it’s kind of every time we’ve had a retro everyone has said,
communications need to improve. It’s like you’ve said it, but you’re not actually doing
it.” [TL]. A part-time newcomer commented on the difficulty of finding out what had
happened in the project after an absence, “because they’ll just talk to each other and
Jjust figure something out, and then you won't find it documented anywhere, or it won’t
even be in the [TFS]” [NC3].

Conveying agile principles: The established members had high expectations of new-
comers and struggled to convey agile principles. “And we now have a very high bar
of workforce that are now the team, are highly motivated and through that, there’s an
expectation that you have to fit into that kind of ethos as well, and that becomes a barrier
for recruiting new students because the bar is so high.” [TL]. The Team Lead thought
the main onboarding issue was integrating relatively young and inexperienced part-time
newcomers, “It’s just them being immersed in it, and for part-time that’s hard, because
up to 15 h a week, whilst doing other learning, and whilst you’re young and having a
social life, and everything else. Finding space in their brain for this is hard, and it’s
being able to get over the principles and culture, which is what [ want to focus on” [TL].

Adjusting team composition: Over time the team evolved to consist of more estab-
lished members and fewer newcomers. This balance improved their ability to continu-
ously improve. “We’ve been through a lot of iterations of how we approach our work,
and I think were hitting a sweet spot of getting things done, ...with having more full-time
members we thought there was value in doing those [sprint refinements]” [SD1].




34 P. Gregory et al.

5 Discussion

This study explored the onboarding of newcomers into a co-located agile software devel-
opment project team because of its interest to practitioners who want to sustain their
teams over the long term. We addressed the question of how newcomers integrate into
ongoing teams and learn the agile approach. Analysing our single case study using
Bauer’s onboarding framework [12], we found that onboarding combines traditional
and agile-related techniques (see Table 2). Agile-related techniques include self-study
of agile fundamentals, information radiators, introducing ceremonies prior to experienc-
ing the ceremony, pair programming, immersion for experiential learning, code reviews,
testing, retrospectives, sprint reviews, sprint refinement sessions, and flexible task allo-
cation. In our case, we also found onboarding issues. The issues included supporting
newcomers to act in an empowered agile manner and approach the work with an experi-
mental mindset, being flexible to support inclusiveness of part-time staff, that conveying
agile principles is a challenge, and the proportion of established to newcomer staff affects
continuous improvement.

Our findings support those of [4, 9], and [13], however, ours are based on an in-depth
contextual study of onboarding practices in an agile team and provide more nuance than
those prior studies. We identify additional agile practices that support onboarding and
show the extensive use of coaching and feedback processes in agile onboarding. In
addition, our study identifies specific onboarding challenges for newcomers and teams.
The challenge not identified in these earlier studies is empowerment, more specifically,
how to encourage newcomers to act in an empowered way.

Our study contributes to practice by providing guidance for agile project teams who
want to better understand the role of specific agile practices in supporting onboarding,
and which traditional onboarding techniques to use alongside these agile practices to
provide comprehensive onboarding support. We provide three recommendations for
agile practitioners 1) incorporate the agile-relate practices shown in Table 2 that support
onboarding, 2) use a long-term recruitment approach such as hiring placement students
and apprentices and hire from this pool to ensure good staff ‘fit’, and 3) focus on training,
explaining, and modelling empowerment when onboarding staff.

For theory, our study supports traditional onboarding knowledge, as it is an example
of the use of Bauer’s framework, and extends that framework to, at least partially, account
for onboarding in co-located agile software development project teams.

Our study has limitations. Our findings are based on a single case study with a limited
number of interviews, and we acknowledge our findings are of limited transferability to
other settings. In addition, we did not interview the whole team, so some perceptions
are missing. We did get insights from a range of people, from very new staff, staff with
1 year of experience, to long-established staff. Thus we achieved some triangulation
of data sources [16]. We also carried out a member check by providing a report to the
project team summarising our findings and asking for confirmation and feedback.



Onboarding: How Newcomers Integrate into an Agile Project Team 35

6 Conclusion

In this paper, we claimed that onboarding newcomers to co-located agile software devel-
opment projects might differ from onboarding in general. We found traditional onboard-
ing practices are used in agile project teams and that certain agile practices taught using
immersive learning also support onboarding. We also identified challenges in onboarding
to an agile project team.

This paper makes three contributions 1) provides in-depth insights into onboard-
ing in an established co-located agile project team and specifies agile and other prac-
tices that support onboarding including challenges faced, 2) shows that Bauer’s [12]
onboarding framework is appropriate in a software engineering context, and 3) provides
recommendations for practitioners as to those agile practices that support onboarding.

In future work, we recommend research to develop a comprehensive onboard-
ing model that fully elaborates the factors in agile onboarding. That research should
encompass onboarding in all agile environments, co-located, distributed and large-scale.

Acknowledgements. We acknowledge the contributions of the research participants, and the co-
funding provided by the Agile Business Consortium (ABC Ltd.) for the Agile Research Network.

References

1. Stavru, S.: A critical examination of recent industrial surveys on agile method usage. J. Syst.
Softw. 94, 87-97 (2014)

2. VersionOne: The 13th Annual state of agile report, pp. 1-15. VersionOne Inc. (2019)

3. Hoda, R., Murugesan, L.K.: Multi-level agile project management challenges: a self-
organizing team perspective. J. Syst. Softw. 117, 245-257 (2016)

4. Buchan, J., MacDonell, S.G., Yang, J.: Effective team onboarding in agile software develop-
ment: techniques and goals. In: ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 1-11. IEEE (2019)

5. Bauer, T.N., Erdogan, B.: Organizational socialization: The effective onboarding of new
employees. In: Zedeck, S. (ed.) APA Handbook of Industrial and Organizational Psychology,
vol. 3, pp. 51-64. American Psychological Association, Washington, DC (2011)

6. Van Maanen, J.E., Schein, E.H.: Toward a theory of organizational socialization. MIT,
Massachusetts Institute of Technology (1977)

7. Fagerholm, E., Guinea, A.S., Borenstein, J., Miinch, J.: Onboarding in open source projects.
IEEE Softw. 31, 54-61 (2014)

8. Steinmacher, I., Gerosa, M.A.: How to support newcomers onboarding to open source software
projects. In: Corral, L., Sillitti, A., Succi, G., Vlasenko, J., Wasserman, Anthony I. (eds.) OSS
2014. TAICT, vol. 427, pp. 199-201. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-55128-4_29

9. Sharma, G.G., Stol, K.-J.: Exploring onboarding success, organizational fit, and turnover
intention of software professionals. J. Syst. Softw. 159, 1-16 (2020)

10. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for autonomous agile
teams: a summary of the second international workshop at XP2019. In: Hoda, R. (ed.) XP
2019. LNBIP, vol. 364, pp. 13—-19. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30126-2_2


https://doi.org/10.1007/978-3-642-55128-4_29
https://doi.org/10.1007/978-3-030-30126-2_2

36

11.

12.

13.

14.

15.
16.

P. Gregory et al.

Barroca, L., Gregory, P., Kuusinen, K., Sharp, H., AlQaisi, R.: Sustaining agile beyond adop-
tion. In: 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 29-31 August 2018, pp. 22-25. IEEE, Prague (2018). https://doi.org/10.1109/seaa.
2018.00013

Bauer, T.N.: Onboarding New Employees: Maximizing Success. The Society for Human
Resource Management Foundation (SHRM), VA, USA (2010)

Britto, R., Cruzes, D.S., Smite, D., Sablis, A.: Onboarding software developers and teams in
three globally distributed legacy projects: a multi-case study. J. Softw. Evol. Process 30, 1-17
(2018)

Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications,
Thousand Oaks (2018)

Saldafia, J.: The Coding Manual for Qualitative Researchers. Sage, London (2016)

Shenton, A.K.: Strategies for ensuring trustworthiness in qualitative research projects. WI 22,
63-75 (2004)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1109/seaa.2018.00013
http://creativecommons.org/licenses/by/4.0/

Agile Practices



®

Check for
updates

Combining User-Centered Design
and Lean Startup with Agile Software
Development: A Case Study of Two
Agile Teams

Ingrid Signoretti, Larissa Salerno, Sabrina Marczak®), and Ricardo Bastos

MunDDoS Research Group, School of Technology, PUCRS,
Porto Alegre, RS, Brazil
{ingrid.manfrim,larissa.salerno}@acad.pucrs.br,
{sabrina.marczak,ricardo.bastos}@pucrs.br

Abstract. The combined use of User-Centered Design and Lean Startup
with Agile Development has been pointed out by the literature as a man-
ner to boost software development. User-Centered Design principles focus
on providing tools for developers to better explore user needs and seek
for a fitter solution. Lean Startup, on the other hand, supplements the
triad combination by bringing the Build-Measure-Learn cycle and the
concept of pivoting, either the problem understanding or the proposed
solution. This paper reports on a case study of two software teams that
have been undergoing the changes and impacts of such combined adop-
tion. We investigated these teams for six months, from the moment that
team members were trained on the job to grasp the essence of using the
integrated approach inspired on Pivotal Labs proposal to the time they
were considered mature enough to share their experiences with others
within the organization. Through our in-depth study, we illustrate how
this adoption promotes changes regarding to mindset, activities, prac-
tices, and techniques. We also report on the ‘team rhythm’ (or work
flow) as experienced by the two teams. The paper contributes to current
knowledge on the topic reporting on the changes and impacts that teams
observed during the combined approach adoption.

Keywords: User-Centered Design * Lean startup - Agile
Development + Transformation + Case study

1 Introduction

Agile methods are defined by flexibility and adaptability in the context of build-
ing software products [3]. Despite the many benefits of adopting an agile method,
the adoption still presents a lack of user involvement and participation [1], and
product assertiveness. Vilkki [15] claims that agile must be combined with other
approaches aiming to fill these gaps. Studies as Innodev [4], Converge [16], Nord-
strom [7], and Lean UX [6] present models that combine agile with UCD and
Lean Startup in order to boost the agile capacity in software development.

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 39-55, 2020.
https://doi.org/10.1007/978-3-030-49392-9_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_3

40 I. Signoretti et al.

Using the combined approach requires a set of preconditions, especially when
compared to using a single agile method. The studies report the need to define
cross-functional teams, and the roles represent each methodology (e.g., software
engineers - agile, product designers - UCD, and product managers - lean startup)
[6]. Also, the adoption puts emphasis on focusing on identifying the problem to
be solved rather than only worrying about identifying the scope [4].

Although the prerequisites mentioned in literature to adopting the combined
approach, we still know little about what changes and impacts take place at
the software team and that might be influenced by or depend upon the orga-
nizational level when facing the adoption. Motivated by the need to discuss
the modifications inherent to the adoption process, we conducted a case study
with two software teams from a large-scale company. Our research reports from
a team perspective the changes related to the teams’ mindset, activities, prac-
tices, techniques, and rhythm to accommodate the combined approach adoption.
Our main contribution is providing an understanding of how the combined use
adoption promotes several impacts on the team’s software development process.
The findings offer inputs to the academia and industry practitioner.

The reminder of this paper is organized as follows: Sect. 2 details the research
method. Section 3 reports on the main results. Section 4 discusses the main find-
ings and explores the paper contribution. Section5 presents previous studies
and a comparison with our results. Section 6 concludes the paper with our study
limitations and proposals of future work.

2 Research Method

We conducted a case study [12] with two teams from a multinational company
named ORG (name omitted for confidentiality reasons). Next, we introduce the
case setting and the data collection and analysis methods.

2.1 Case Setting

We aim to present the changes and impacts perceived by two software teams in
an adoption process of a combined approach composed of Agile, UCD, and Lean
Startup. Therefore, we briefly explain the case setting, including the company’s
previous scenario aiming to emphasize and to contextualize the modifications.
We also present the product scope each team is responsible for.

The Company. ORG has development sites in the USA (headquarters), India,
and Brazil. With over 7,000 employees and responsible for about 1,200 internal
software products, the IT department started its agile transformation in 2015
and moved to the combined use of Agile, UCD, and Lean Startup principles
in late 2017. Before adopting the combined approach, ORG had a well defined
roadmap for software product improvements based on an annual budget negoti-
ated among business department and organized into software projects. High-level
business features were prioritized and decided upon business personnel to later



Combining Agile, User-Centered Design, and Lean Startup 41

be transformed into software requirements by IT software project teams. The
project deadlines were strict and defined by quarter, i.e., every four months the
project teams delivered a set of software features to existing or new software
products to the company internal customers.

Associated with the business features definition negotiation, the company
had Business Representatives responsible for defining the business needs. Once
approved those needs were translated into business features, elected as the start-
ing point for the IT project teams. Mostly, I'T Business Analysts transformed
these features into software requirements with the help of the Business Repre-
sentatives and used these to drive software development.

With the introduction of the agile transformation in 2015, project teams
used Scrum as the guiding development framework. From this time and on,
it become common but not company-wide spread to get more team members
(e.g., developers, software architects, testers) engaged into the business feature-
to-software requirement translation. Some teams move then to a more product-
oriented view while others are still guided by project time slots. The company
starts then to discuss how to move from a world-wide roadmap to a product
development organization when they realize help was need. This is when they
decide to board the agile, UCD and Lean Startup combined journey and hire
Pivotal consulting to support such transformation.

Overall, Pivotal brings the Pivotal Labs' methodology at core of the trans-
formation. This methodology proposes a ‘team rhythm’ (or work flow) composed
of principles and ceremonies based on the three before-mentioned approaches. It
also suggests the adoption of a cross-functional team composed of three leading
roles: Product Designer, Product Manager, and Software Engineer. The Pivotal
Labs’ main goal is to help teams to build software products that deliver mean-
ingful value for users and their businesses. Thus, it offers a framework and initial
starting point for any team to discuss the client/user specific needs and define
its way towards software development.

The transformation and adoption process is the subject of interest of this
research. In order to understand the process, we conducted the study with two
software teams that were already half-way to the understanding of how to become
product software teams. We present the teams’ background next.

Teams’ Context. We observed in-loco, in a lab at the University campus, two
teams from the financial area located in Brazil. The lab was intentionally pre-
pared for the teams to work on as part of a PUCRS and ORG research agree-
ment. Both teams develop software product for the company internal use. The
teams are composed of 2 Product Managers, 1 Product Designer, and 4 Soft-
ware Engineers each. Team A is responsible for a software product that calcu-
lates the associated cost services offered by the products sold by ORG and dis-
plays this information to ORG consumers. The software consolidates information
about services offered by the company, such as sale, installation, and equipment
configuration, and stores employee data and hours spent on the provided services.

! https://pivotal.io/Labs.


https://pivotal.io/Labs

42 I. Signoretti et al.

Table 1. Participants’ profile

Team Role IT work exp | Company exp
Team A | Product Manager 21 6
Team A | Product Manager 16 7,5
Team A | Product Designer 27 10
Team A | Software Engineer 6

Team A | Software Engineer 21 8
Team A | Software Engineer 5,5 4
Team A | Software Engineer 20 11
Team B | Product Manager 19 0,5
Team B | Product Manager 23 10,5
Team B | Product Designer 5 4
Team B | Software Engineer 10 4
Team B | Software Engineer 15 11
Team B | Software Engineer

Team B | Software Engineer 5 5

— BR Transformation Lead | 12 7

Data are consolidated into a projects by served customer for another product
team from the financial area to use this information as input for their product
use. Team B is responsible for the software product that gathers information
about these services generated by ORG software products and stores them for
Team A to use. The team has the goal to automate the calculation average of
the equipment and services costs offered by the Brazilian site. Sequentially, the
application performs the analysis of these multiple data aiming to provide con-
solidated information to the accounting area, which uses these data for internal
control and reports for the company. Table 1 presents the participants’ profile
per team.

2.2 Data Collection

We observed the two product teams for a 6 months-period and we used multiple
data sources to conduct the study. Following, we present each data collection
method and its related purpose within our study.

Questionnaire. It was used to collect the participants’ profile (name, role, main
responsibilities, time in years working in I'T and at ORG, and whether the person
participated of the immersion training in the US.

Semi-structured Interviews. They were used first to gather information on the
team members perceptions about the combined transformation, the training



Combining Agile, User-Centered Design, and Lean Startup 43

Interview Excerpt Code
4 A N
"...The difference is that before it was Categor_v
the P.O defining and deciding, while
the others performed, now the whole
team participates in all decisions."
A

Team Autonomy

~

Shared
Responsabilities

/ )
""...Decision-making is also shared.
Even by voting, all teams' member is | Shared Decision-
heard. Everyone participates." making
~— @
A 4

Fig. 1. Code analysis example

experience, and benefits and challenges. This interview was extended to the
Brazilian Transformation Leader. A second round of interviews were conducted
with all team members to gather their perception on team roles changes, inter-
action among roles, and impact of changes on the work routine. Interviews were
also generally used as a means to follow-up and learn more details about diverse
aspects unveiled in the observation sessions. All interviews were voice recorded
and transcribed for analysis. None lasted more than 30 min as previously agreed
with the industry research project sponsor.

Daily Observations. These were conducted to observe team ceremonies (e.g.,
daily standup, retrospective, iteration planning), meetings with stakeholders
(user interviews, demos), and work routine. We also conducted shadowing of
roles (e.g., product manager, product designer, and software engineer) seeking
in-depth knowledge about the responsibilities of each role.

Focus Group. We performed six sessions, 3 of them were overall follow-ups and
confirmation of data collected through other methods (e.g., to discuss in-depth
the Product Designer new role). Moreover, specifically, one session was conducted
aiming to consolidate the teams perceptions about the benefits and challenges
of the combined approach (reported in [14]). Another session focused on the
discussion of the elements of each approach as perceived by the teams (e.g.,
activities, techniques, and work products). And another session aimed to confirm
the mapped elements of each methodology (e.g., naming, meaning, context of
use, etc as observed in their daily work routine) into the combined approach
representing the team work flow (or team rhythm as called by Pivotal Labs). In
this last session we also asked the participants to visually represent this work
flow as they saw fit. Each focus group session lasted in average 1.5h, except the
last one that lasted about 3h (previously arranged with the teams). All sessions
were voice recorded and transcribed.



44 I. Signoretti et al.

2.3 Data Analysis

Regarding data analysis, we conducted the content analysis procedure by Krip-
pendorff [9], using a qualitative approach to the ethnographic content analysis,
where we are focused on the narrative description of the situations, settings, as
well as the perspective by the actors involved in the phenomena. Also, as we use
recording/coding units, we organized the analysis into the following steps: orga-
nization and pre-analysis, reading and categorization, and recording the results
and using Atlas.TI? tool. We first read the dataset, extracted text excerpts, and
marked them as codes (see an example in Fig.1). These codes were revisited
and grouped into larger codes, forming categories. We constantly reviewed our
coding scheme with the two seniors researchers (the last two authors) aiming to
mitigate any limitation or bias in our analysis. The two senior researchers also
reviewed the questionnaire and interview scripts and supported the piloting of
these instruments for face and content validity with an invited researcher with
previous experience working with agile teams in industry.

3 Results

The case study results reveal aspects related to the combined approach adop-
tion and usage. For instance, the product is developed under a new perspective,
using a problem-oriented mindset which included the teams’ changes to working
attitudes to adapt to this new mindset (Sect.3.1). We also highlight changes
related to methodological aspects (Sect. 3.2), such as the addition of UCD activ-
ities to promote user involvement and participation. Also, the use of the Build-
Measure-Learn loop guided by the underlying concept of experimentation from
Lean Startup as a means seek for the proper product solution. Or yet, changes
to the current already adopted XP practices to improve quality of code and
constant releases. We describe these and other relevant results next.

3.1 Product Developing Under a New Perspective

In our previous study [14], we presented the company decision for migrating
from agile to the combined approach, including the transformation package of
activities to train people. Here, we discuss changes in the teams’ day-to-day
work, including those that reflect upon or depend on organizational decisions.
We start by presenting the change from a project-base structure to a problem-
based mindset-oriented way of working.

Problem-Oriented Mindset. Teams’ members mentioned that one of the
most relevant changes experienced during the transition was moving to a
problem-oriented perspective to seek for the user needs understanding rather
than refining software requirements only:

2 atlasti.com.


http://atlasti.com

Combining Agile, User-Centered Design, and Lean Startup 45

“Before, we usually received a set of predefined requirements. We imple-
mented these requirements and considered our work done. We did not know
whether the problem was solved or not. Now, we do participate in and have
the opportunity to investigate and understand the problem.”

Team A experience

The participants also considered that the change in mentality was a challenge
at first, as this modification directly affects the team’s attitudes. The mindset
change required that team members start acting as main actors in the develop-
ment of the product and not just as those who operationalize it. However, it is
crucial an ownership attitude from the teams to fit in this new mentality.

Team Engagement. The teams’ commitment to the entire software devel-
opment process has increased considerably since the adoption of the problem-
oriented mindset. In fact, the teams started to recognize the need to move to an
improved way to provide more business-aligned products, changing at the core
the manner of understanding the product, during the hands-on training on the
new combined approach. This realization led them to understand that achieve-
ments were dependent on the team involvement with changes. For instance, they
promoted a shared product vision:

“Everyone needs to understand the product, not just the product designer
or the product manager - the software engineer is no longer isolated. The
entire team needs to know why the products are working and have an under-
standing of the product vision. Everyone is always up-to-date.”

Team B experience

Shared Responsibilities. With a shared product vision is essential that teams
have shared responsibilities. The whole team participates from activities as the
problem understanding - where is discussed the product’s needs. By establishing
a relationship between them and the stakeholders, the team can define a stake-
holder map - which allows the teams to be more effective in the next phases
of the product development, as well. This change requires a different position
from the software engineers since the product designer and product manager
already have this participative role with the stakeholders due to the nature of
the roles. Now, the software engineers affirm that they need to adapt to a more
collaborative attitude in all decisions that involve the product:

“We have the responsibility to guarantee the environment to the solution
developing, make the pipeline implementation using continuous delivery
and integration. However, we are now responsible for participating in each
decision in the team since the conception of the product, joining the users’
interviews, stakeholders meeting, and the other ceremonies.”

Software Engineers from team A and B experience

In the teams’ perspective, in terms of methodological aspects, the combined
approach adoption depends strongly on the first two elements discussed above.



46 I. Signoretti et al.

Having established that, we can describe the aspects related to the teams’ way
of working on the adoption of UCD and Lean Startup concepts, also the change
from the Scrum framework to the XP methodology.

3.2 Methodological Aspects

As previously mentioned, we asked the teams to visually illustrate how they
perceived the changes related to methodological aspects that guide their work.
Figure 2 shows the teams original representations.

(a) Team A

(b) Team B

Fig. 2. Team A and B work flow (or team rhythm)

Following the teams’ representation, next, we start exploring the aspects
related to UCD as a manner to promote a user involvement in the product
development in the teams’ perspective.



Combining Agile, User-Centered Design, and Lean Startup 47

UCD to Promote User Involvement and Participation. Although agile
methods encourage the relationship between team and stakeholders, the partic-
ipants felt that in their context, it seems to be not enough because the product
still not address the stakeholders’ needs. With the change for the combine app-
roach usage, business people and users reported a set of benefits in terms of
user participation in the teams’ activities and their daily work, and also the
user involvement, since with the introduction of UCD activities, techniques and
concepts they seem to be more engaged in the product development.

The participants considered as a significant modification in the UCD con-
text the adoption of the Discovery and Framing framework designed by Design
Council®. On the two teams’ representation (Fig.2), the framework is in the
early stages, aiming to explore the problem and possible solutions to it.

Team members emphasize that the use of discovery and framing framework,
it is a consequence of work in a problem-oriented, reaffirming once again the
mindset change impacts. Another relevant factor for participants is the need to
have the whole team working in the framework stages, as problem exploration,
user interviews, user research, and other activities. Team A members consider
that team engagement to participate in these activities promotes an approxima-
tion with the stakeholders, making them believe in teams’ effectiveness:

“We gain their (stakeholders) trust when we talk with them and show inter-
est in providing a product that attends and solves their problems.”
Team A experience

Team B participants declare:

“Using UCD techniques and also a mindset of being more empathetic with
our stakeholders, make them feels indispensable in the development pro-
cess, and consequently, encouraged to talk and to contribute with us. Our
stakeholders see us as problem solvers. We gain their trust when we show
interest in providing a product that attends the problems.”

Team B experience

The problem understanding is an outcome of the problem exploration. This
outcome allows possible framing solutions to the given problem. The teams
reported that the stakeholders’ presence is even more necessary at this stage.
Team A members affirm that to promotes the stakeholders’ engagement is vital
to collect stakeholders’ feedback all the time and consider it:

“We use stakeholder feedback as a tool to refine and redefine problem defi-
nition and priority. Being aligned with the stakeholders’ needs makes them
more confident about our work. We work together with stakeholders, ensure
that the developed product is being following the right path.”

Team A experience

3 https://designcouncil.org.uk /news-opinion /what-framework-innovation-design-
councils-evolved-double-diamond.


https://designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond

48 I. Signoretti et al.

In team B experience, another concept that helps to focus on the problem
understanding and provide a more accurate solution to the product is experi-
mentation concept inside the problem discovering:

“We aggregate value to our products by using experimentation. We explore
the problem that business brings to us, and by the end of it, we address
their needs in the product.”

Team B experience

Also, addressing the users and business needs in the product, demand a
change of mindset to guide the teams. They mentioned that an important value
taken for all three methodologies is the BML loop and experiments, which lead
us to explore the teams’ perspective on the lean startup concepts addition.

Lean Startup Concepts as a Tool to Be More Assertive. One of the
most powerful concepts derived from Lean Startup in the teams’ point of view
is the BML loop inclusion. The participants have defined the BML usage as an
approach, and the reason for that is that loop is applied all the time:

“We use BML all the time in any part of our process. For example, a user
interview. If we are defining the interview script, we are building the script.
We measure the script value by observing after the interview, if we collected
the right data or not (e.g., the stakeholders answer the question, but we
do not formulate the question for the answer that we aimed.) - and this
process allows us to learn from our fails to create a more assertive script
to be more accurate in the next one. BML is applicable to any product
development activity.”

Team A experience

However, BML usage is not so relevant if used alone. The richness of the loop
is combined with experimentation, as teams’ members reported:

“All foundation of the BML brings the experimentation concept in the core
of it. We work with a problem-oriented mindset because the erperimenta-
tion allows it. In the beginning, we have a simple problem view, and this
leads us to start making assumptions from that, execute the experiments
using prototypes or any technique. The results give us a condition to mea-
sure it and to refute or accept our assumptions. At the end of it, we learn
from the results and restart the loop, refining our vision.”

Team A and B experience

Team A also experienced an unusual usage of experimentation in a non-
software solution. They mentioned that this shows the relevance of the concept
usage for the teams, stakeholders, and to the company itself:

“Our users were claiming a solution to the performance issue in the sys-
tem. Before we run directly to the code, imagining that the problem in
the software solution, we decide to analyze the problem. The stakeholders



Combining Agile, User-Centered Design, and Lean Startup 49

reported that the use of some spreadsheets contained a significant amount
of data, and it was getting a poor performance taking about three days to
calculate and return the results. So, we assume that maybe the problem was
not in the application, but in the host machines. We decided to run the
same application in a more powerful machine, and we have found out that
our assumption was right - the problem was in the machine’s performance.
This experience shows us the relevance of experimentation - and more than
that, it shows that sometimes the problem solution could not be a software

solution, which for us is a huge breakthrough.”
Team A experience

Besides, the participants perspective, experimentation gives them room to
fail up; however, fail and fix quickly:

“Product development is uncertain and very susceptible to failure. Nev-
ertheless, what matters is the speed at which we will react to those. The
experimentation as a core of the BML gives us room to fail but also allows
us to fail and fix quickly. We do not meed to wait until the end of the
iteration to discover that we do not understand the stakeholder needs.”
Team A and B experience

Related to the pivot/persevere usage, the concept follow the same idea of
one of the agile principles, in terms of adaptability for team B members. They
affirmed that pivot/persevere reinforce the relevance of refining the product and
problem strategy, being adaptable to change or persevere:

“Ezxperiments give us conditions to understand if we are in a smart strat-
eqy for our product or not. Also, the stakeholders’ relationship with us is
an essential factor to persevere in the strategy or start to look another
direction, pivoting. Sometimes, the strategy defined in the long-term can
not be valid anymore. That is the reason why BML, experimentation, and

pivot/persevere perform better together; one depends on the other.”
Team B experience

Notwithstanding, the addition of UCD and Lean Startup has been the main
change. In terms of code development, the teams reported a need to align the
changes in a possible technological manner. To attend this modification, partic-
ipants reported the use of XP instead of Scrum as an agile method. Now, we
explore how the insertion of XP affected the process, from the teams’ perspective.

XP to Boost Code Quality. The XP methodology choice as an agile method
came with the Pivotal Labs approach proposal. However, team A members rec-
ognize that even that the change was top-down from Scrum framework to XP
was a great fit. They cited that the use of XP practices (e.g., pair programming,
TDD, and unit test) boost the development and increase the code quality:

“The use of pair programming increases our product development process.
We can benefit from using it in many ways: from accelerating the learning

process of a new engineer, to promote improvements in the code quality.”
Team B experience



50 I. Signoretti et al.

Continuous Integration (CI)/Continuous Delivery (CD) pipeline was consid-
ered as a practice that promotes a problem-oriented mindset in the context of
software development, as team B participants mentioned:

“CI/CD pipeline was crucial to address the changes. It promotes faster

feedback and help us to validate stories on the production environment.

CI/CD inclusion encourages software engineers to feel more proficient.”
Team B experience

The participants also reported significant modifications in terms of the team
rhythm. They have changed a set of ceremonies during the daily and the iteration
work and also its nomenclature aiming to attend to XP methodology rhythm:

“We tried to be more aligned, and the ceremonies are useful for that. We
continued doing the standup meeting, retrospective, and planning. How-
ever, we now have an office standup to be more connected to other teams
- also, the ceremony nomenclature change from sprint to iteration. In the
planning sessions, we choose if we must have more than one session, for
example, a pre-iteration meeting. Finally, we have weekly sessions with all
stakeholders to strengthen our relationship with them further.”

Team A and B experience

Once again, BML shows its relevance, as well as experiment concepts in
teams’ perspectives. The teams reported that the use of these concepts impact
the manner they deal with the iteration directly. It is a common-sense between
them, the relevance of developing the product, thinking more systematically and
investigating the real problem, defining assumptions, executing the experiments,
collecting data, and verifying whether the assumptions were accepted or refuted.

Concluding the teams report, the participants attributes the adoption success
in terms of mentality, engagement, and modifications related to methodological
aspects with UCD and Lean Startup, to a organically approach application:

“Fven though our drawing represents a sequential or continued vision of
the methodologies combination, our daily use is adapted. If we are during
the iterations and perceived that the problem is not well defined, we are
ok to come back to the discovery and framing framework and start again.
Alternatively, if we defined some assumptions and discovered that the prod-
uct/problem vision is not aligned, we can redefine these assumptions. This
is secret of the adoption, apply the approach organically.”

Team A experience

4 Discussion

Schon et al. [13] mentioned the barriers of access the stakeholders as a challenge
in their study. In the reported study, mitigate this barrier was considered as one
of the crucial changes that derive the way that the company works now; it is
working as a problem-oriented perspective. The teams changed their mindset to



Combining Agile, User-Centered Design, and Lean Startup 51

map the user and business problems over only refine pre-defined requirements -
solving the difficulty of decrease the creativity to the process of solution-finding.

Teams’ attitude required an adaption to attend the problem-oriented mindset
change. All roles became more engaged in activities as product/problem scop-
ing, user interviews, or stakeholder meetings. Nyfjord and Kajko-Mattsson [10]
mentioned in their study that the entire team engagement in these activities
often was executed by business people and the teams (especially software engi-
neers) only receive the artifact produced from these activities. Once again, these
problems are decreased by changing for the problem-oriented mindset.

Reinforcing the development-oriented by user/business problem perspective,
there is an extensive effort on the discovery of the right problem and framing the
possible solutions to the right solution. The double diamond structure that the
teams applied follows the UCD activities defined at ISO 9241-210 [8]. Schon et
al. [13] also defines that this is one of the critical aspects under the integration
of UCD and Agile, separate product discovery and product solution. Define the
discovery and framing usage brings benefits associated with the added value
of the product. Alahyari et al. [2] mentioned that one of the factors that can
impact the perceived value on the products is the customer relationship, which
is highly explored during the discovery and framing since the UCD activities and
techniques usage promotes an approximation between team and stakeholders.

Incorporated to the discovery and framing and also in the iteration, the teams
make use of the build-measure-learn loop, aiming to produce a better product.
The perceived benefits and the reason for the teams choose to use build-measure-
learn derived by experimentation was very similar to those reported by Yaman et
al. [17], which reduce the development effort, deeper customer insights, and use
experimentation as a guide on development decisions. The teams also reported
that the use of a build-measure-learn application was a considerable modification
since they work only with agile methodologies before, and they feel that agile
does not help them to know what product should be developed. Edison, Wang,
and Abrahamsson [5] affirm the same, agile prescribes how to develop, but it is
not so accurate to answer and to investigate the products’ needs.

Another finding on the combined approach adoption is the use of the pivot
and persevere concept original from lean startup [11]. Pivot decision could occur
at any moment (e.g., problem/solution definition, scope definition), as well as
remain in the same strategy, persevering. This is relevant because inputs to the
teams and does not allow the teams to work on products that will not add value
to the customers and business people, reducing the waste of the process [11].

The change impacts, related to the insertion of XP practices, were lower
since the teams were already familiar with agile methods. However, the change
for an XP over scrum framework affects their way of work. The inclusion of the
build-measure-learn loop and also the XP practices as pair programming, TDD,
and continuous delivery bring perceived benefits to the teams and stakeholders.

As reported, the manner of how the combined approach is adopted is essen-
tial. It is possible to notice that even that concepts from UCD and Lean Startup
are essential in their new way of work, the core of the approach remains in



52 I. Signoretti et al.

agile value, which is a response to change over following a plan [3], which means
use the approach adaptively. Pivot/persevere concepts explore in the core of it,
the change of the team rhythm adopting XP ceremonies, which was claimed to
promote the engagement and involvement among the team members and stake-
holders. From a team’s perspective, these modifications ensure adoption success.

5 Related Work

Combine UCD and Lean Startup with Agile software development have been a
hot topic in the context of software development [4,16]. In this section, we aim
to compare our findings in light of the literature findings of the subject.

Lean UX [6] philosophy is grounded on Agile software development, Design
Thinking (DT), and Lean Startup methodologies. This philosophy has focused
on the design process incorporated into the development of a product that had
defined principles based on the concepts of the three methodologies (e.g., cross-
functional teams from DT, permission to fail from Lean Startup, and getting out
of the deliverable business from agile). Although the principles are related to the
combined approach presented in this study, the fact of Lean UX’s focus on the
design process illustrates the difference from our case study, which explores the
combined approach adoption in the software development context. Nordstrom
[7], Converge [16], and InnoDev [4] models also proposes a combined approach of
Agile software development, Design Thinking (DT), and Lean Startup. However,
the models are focused on software product development. In Nordstrom and
converge (which was inspired by Nordstrom), starts applying DT, right after
Lean Startup concepts BML, experiments, and pivot and persevere, in the end,
the sprints are guided by BML concept also. InnoDev model, on the other hand,
starts with an initial phase of scoping, which uses elements from DT, and follows
the same flow used by the other two models above.

Similarities could be observed from the literature studies, and our case
reported. The double diamond usage and the concepts as BML and experimen-
tation are present Nordstrom Model. Also, the models propose through a set of
techniques derived from DT and Lean Startup, the problem-oriented mindset.

However, compared to our study, the literature findings have aimed to pro-
pose models for the combined approach. Our studies does not proposes a model.
We aim to reports by agile teams’ perspective from a multinational company,
how UCD, Lean Startup, and Agile are adopted and used in their daily work.
Nordstrom and Converge models were evaluated in startups, and even though
InnoDev was designed for small to large companies, it was not evaluated empir-
ically. Also, this difference implies that these studies do not have the whole
context of persuading users and business people to believe in the adoption.

Another difference compared to our case study and literature findings is the
use of UCD over DT. Moreover, also, BML usage is applied from the middle to
the end of the presented models. In our study, the teams reported the use of BML
during the entire process, followed by experiments. Finally, the models propose
the use of the Scrum framework just using some XP practices - in our case study,
the teams fully adopted XP practices, techniques, and rhythm (ceremonies).



Combining Agile, User-Centered Design, and Lean Startup 53

The comparison between our case study and literature findings gives an
understanding of the need for a detailed characterization of the combined app-
roach by teams’ perspective, which were the most affected in the adoption. This
richness of detail was observed in none of the studies. Also, reinforce the rele-
vance to recognize how this kind of transformation takes place in a large-scale
setup.

6 Conclusion, Limitations, and Future Work

We reported through a case study the perspective of two teams about the com-
bined approach adoption composed of UCD, Lean Startup, and Agile Software
Development. The detailed characterization provided in this study reveals that
the adoption is comprised of a set of elements as a new problem-oriented mindset,
team engagement, and these two above provides methodological aspects changes.

Also, it is relevant to affirm that UCD and Lean Startup in software devel-
opment were a significant finding from the study results. UCD contributes by
promoting user involvement and Lean Startup with BML usage as an approach,
having experimentation in the core. An important conclusion, this combination
has the concern of stays adaptable and its usage in a more organic way are char-
acteristics of agile methods that remain at the core of the combined approach.

For the academy audience, our study contributes to essential details about the
elements and essence that surrounds this approach. The industry practitioners
will take advantage of the described study used by a multinational company and
how this approach fits in the software development process setting.

Inherent to any empirical study, this study has limitations. Construct valid-
ity regards whether the scenario of study is representative of the real world while
external validity is concerned with generalization. We observed two teams in a
real setting, which offers them a new setup that aims to promote collaboration.
Also, the teams are composed of members playing distinct roles and with differ-
ent experiences. Moreover, we used interchangeably and overtime multiple data
sources aiming to triangulate our findings, which were reviewed continuously by
senior researchers. Therefore, although we cannot claim that our results apply
to distinct scenarios, these strategies helped reduce limitations.

As future work, we suggest, the replication of the study in other compa-
nies with the same configuration, aiming to compare the findings; also, another
valuable work could be compare teams who adopt the combined approach and
those that use another approach (e.g., Scrum, Kanban), aiming to discover the
strengths and weakness of the approach compared to other agile methods.

Acknowledgements. We thank the study participants and acknowledge that this
research is sponsored by Dell Brazil using incentives of the Brazilian Informatics Law
(Law no 8.2.48, year 1991).

References

1. Abelein, U., Sharp, H., Paech, B.: Does involving users in software development
really influence system success? IEEE Softw. 30, 17-23 (2013)



54

10.

11.

12.

13.

14.

15.

16.

17.

I. Signoretti et al.

Alahyari, H., Svensson, R.B., Gorschek, T.: A study of value in agile software
development organizations. J. Syst. Softw. 125, 271-288 (2017)

Beck, K., et al.: Manifesto for agile software development (2001). https://www.
agilemanifesto.org/

Dobrigkeit, F., de Paula, D.: The best of three worlds-the creation of INNODEV,
a software development approach that integrates design thinking, SCRUM and
lean startup. In: Proceedings of the 21st International Conference on Engineering
Design, pp. 319-328. Design Society (2017)

Edison, H., Wang, X., Abrahamsson, P.: Lean startup: why large software compa-
nies should care. In: Proceedings of the International Conference on Agile Software
Development, pp. 1-7. ACM (2015)

Gothelf, J.: Lean UX: Applying Lean Principles to Improve User Experience.
O’Reilly, Sebastopol (2013)

Grossman-Kahn, B., Rosensweig, R.: Skip the silver bullet: driving innovation
through small bets and diverse practices. In: Leading Through Design, pp. 815-830
(2012)

ISO: 9241-210: Ergonomics of human system interaction-Part 210: HCD for inter-
active systems (2010). https://www.iso.org/standard/52075.html

Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. Sage,
Thousand Oaks (2018)

Nyfjord, J., Kajko-Mattsson, M.: Degree of agility in pre-implementation process
phases. In: Wang, Q., Pfahl, D.; Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp.
234-245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79588-
921

Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)
Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14, 131 (2009). https://doi.org/10.
1007/s10664-008-9102-8

Schoén, E.-M., Winter, D., Escalona, M.J., Thomaschewski, J.: Key challenges in
agile requirements engineering. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.)
XP 2017. LNBIP, vol. 283, pp. 37-51. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6-3

Signoretti, 1., et al.: Boosting agile by using user-centered design and lean startup:
a case study of the adoption of the combined approach in software development.
In: Proceedings of the International Symposium on Empirical Software Engineering
and Measurement, pp. 1-6. IEEE (2019)

Vilkki, K.: When agile is not enough. In: Abrahamsson, P., Oza, N. (eds.) LESS
2010. LNBIP, vol. 65, pp. 44-47. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16416-3_6

Ximenes, B.H., Alves, I.N., Araijo, C.C.: Software project management combining
agile, lean startup and design thinking. In: Marcus, A. (ed.) DUXU 2015. LNCS,
vol. 9186, pp. 356-367. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20886-2_34

Yaman, S., et al.: Introducing continuous experimentation in large software-
intensive product and service organisations. J. Syst. Softw. 133, 195-211 (2017)


https://www.agilemanifesto.org/
https://www.agilemanifesto.org/
https://www.iso.org/standard/52075.html
https://doi.org/10.1007/978-3-540-79588-9_21
https://doi.org/10.1007/978-3-540-79588-9_21
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1007/978-3-642-16416-3_6
https://doi.org/10.1007/978-3-642-16416-3_6
https://doi.org/10.1007/978-3-319-20886-2_34
https://doi.org/10.1007/978-3-319-20886-2_34

Combining Agile, User-Centered Design, and Lean Startup 55

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Agile Software Development Practices
and Success in Outsourced Projects: The
Moderating Role of Requirements Risk

Oliver Krancher®

IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
olik@itu.dk

Abstract. Although agile practices are gaining in popularity, there is little evi-
dence showing how particular agile practices, in particular those involving the
client, affect the success of outsourced software projects. Data from a matched
survey of sponsors and developers in 60 outsourced information systems projects
indicate negative effects of continuous analysis and positive effects of joint deci-
sion making and continuous integration on project success. Moreover, interaction
analyses show that some positive effects are enhanced and negative effects damp-
ened when requirements risk is high. These findings caution against continuous
analysis in outsourced projects while they support joint decision making and con-
tinuous integration. The findings also empirically substantiate the largely untested
assertion that agile practices help cope with changing requirements.

Keywords: Agile software development - Agile practices - Requirements risk -
Project success - Continuous integration - Continuous analysis - Joint decision
making - Agile requirements engineering

1 Introduction

Information systems (IS) projects have a notorious reputation for running over time
and budget while not fully satisfying user needs [1]. Many organizations are therefore
turning to agile methods, hoping to increase software quality, reduce costs, shorten time-
to-market, and better handle changing priorities by using agile methods [2]. Teams using
agile methods typically tailor their use of agile methods [2], i.e., they select the practices
to be used in a particular project from the practices advocated in methods such as Scrum
[3] and XP [4]. A key question for these teams is which practices are most likely to lead
to a successful project given the characteristics of the project at hand.

Over the past two decades, empirical research on agile software development has
accumulated knowledge that provides valuable guidance to these teams [5, 6]. Some
research has found positive associations between the use of agile methods in general
(rather than of particular practices) and project success [7, 8], indicating that the general
use of agile methods can enhance project success. Other studies have examined the
effects of particular agile practices on project success and found positive effects of

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 56-72, 2020.
https://doi.org/10.1007/978-3-030-49392-9_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_4

Agile Software Development Practices and Success in Outsourced Projects 57

pair programming [9, 10] and continuous integration [11] and negative effects of daily
stand-ups [10].

Notwithstanding these insights, evidence of the links between agile practices and
project success remains limited in three major ways. First, in contrast to practices that
involve engineers only (e.g. pair programming, continuous integration) [12], less is
known about the impact of practices that involve engineers and business people, such as
joint decision making and continuous analysis. While qualitative research has explored
such practices, quantitative evidence of their effect on project success is scarce [13].
Such evidence could help practitioners navigate the tradeoff between the benefits (e.g.
enhanced feedback and communication) and drawbacks (high search costs, opportunistic
threats) associated with these practices. Second, few studies have examined the effects of
particular agile practices in the context of outsourced IS projects, i.e., in settings where
client organizations delegate development work to external vendors. This is problematic
because not all agile practices may work equally well across firm boundaries [14, 15].
For instance, frequent requirements revision and reprioritization can entail high contract
adaption costs and opportunistic behavior in outsourced projects. Third, there is sur-
prisingly little evidence of the context factors under which particular agile practices are
effective. In particular, we lack evidence of the potential moderating role of requirements
risk (i.e., the degree to which requirements are uncertain and frequently changing) [1] in
the relationship between agile practices and project success despite the frequent claim
that agile methods help cope with changing requirements.

This paper theorizes and empirically examines how three agile practices affect the
success of outsourced software projects and how these associations are contingent on
requirements risk. The three agile practices in the focus of the paper are continuous inte-
gration (compiling, building, deploying, and testing code several times a day), continu-
ous analysis (continuously triggering and incorporating new information about require-
ments), and joint decision making (client and vendor making important decisions jointly).
Drawing on a perspective of software development as knowledge integration, it is argued
that practices for knowledge integration within the vendor (continuous integration) come
primarily with benefits whereas practices for client-vendor knowledge integration (con-
tinuous analysis, joint decision making) come with both benefits and costs. As such the
overall effects of client-vendor practices will depend on the need for knowledge inte-
gration, which is primarily rooted in difficulties to articulate requirements up-front (i.e.,
requirement risk). Hypotheses derived from these ideas are tested using data collected
through a matched survey of 60 client sponsors and 60 vendor engineers. The results
emphasize the benefits from within-vendor practices, draw a more differentiated picture
of the effects of client-vendor practices, and largely support the often asserted but rarely
tested moderating role of requirements risk.

2 Theory Background

2.1 Software Development as Knowledge Integration

This paper explains the impact of agile practices on the success of outsourced projects
by drawing on the perspective of software development as knowledge integration. A
knowledge integration perspective holds that project team members possess and acquire



58 O. Krancher

heterogeneous knowledge and that a key challenge lies in fusing this heterogeneous
knowledge into usable software [ 16, 17]. Software development teams typically comprise
business people possessing business knowledge (e.g. ideas about requirements for the
software) and engineers possessing technical knowledge (e.g. programming languages,
design patterns) and knowledge about existing software systems [17-19].

From a knowledge integration perspective, a key challenge lies in the interdepen-
dencies between these knowledge areas. For instance, business people often realize
their requirements (business knowledge) only after they have seen a first version of
the software [16, 20]. But engineers can build a first version (i.e., apply their technical
knowledge) only after business people articulate a first version of requirements (busi-
ness knowledge). These interdependencies challenge the assumption of independence
of requirements (business knowledge) from design options (technical knowledge) and
from the functionality of existing software systems (software knowledge), an assump-
tion inherent to plan-based software development [16, 17]. Interdependencies exist not
only between the business and technical spheres but also within spheres. For instances,
interdependencies within the technical sphere manifest because engineers need to know
about design decisions and code changes made by other engineers to ensure alignment
with own code contributions. The strength of these interdependencies is, to large extent,
driven by requirements risk (i.e., the degree to which requirements are uncertain and
frequently changing) [1]. The fuzzier the ideas about requirements are, the more efforts
will be needed to arrive at a shared understanding of how a useful software for the given
purpose should look like and the more efforts will be needed to coordinate development
actions in the face of changing requirements.

Although knowledge integration issues and requirements risk arise in a variety of
projects, outsourced projects face the peculiar challenge of integrating the client’s busi-
ness knowledge and the vendor’s technical knowledge across firm boundaries [17, 18].
The rich literatures on IS outsourcing and on theories of the firm point to two key
challenges that arise from this boundary [21-23]. First, individuals from different orga-
nizations often lack shared knowledge and shared assumptions about effective problem-
solving processes, which makes coordination more difficult [21, 22]. Second, different
organizations may work towards different goals. In particular, fuzzy requirements may
invite opportunistic behavior by the vendor because it is difficult to legally enforce
contracts when requirements are unclear at the outset [22, 23].

2.2 Agile Practices for Within-Vendor and Client-Vendor Knowledge Integration

Agile methods help address knowledge-related interdependencies by establishing feed-
back processes and team-based organizing structures [20]. Three agile practices may be
particularly suitable to this end: continuous integration, continuous analysis, and joint
decision making. While continuous integration addresses within-vendor knowledge inte-
gration, continuous analysis and joint decision making address knowledge integration
between client and vendor.

Within-Vendor Knowledge Integration. A key agile practice for within-vendor
knowledge integration is continuous integration, i.e., the practice of engineers com-
piling, building, and testing code many times a day, typically by relying on tools for



Agile Software Development Practices and Success in Outsourced Projects 59

automating build and deployment processes [11, 24]. Continuous integration promotes
knowledge integration within the technical sphere (i.e., between engineers) because it
provides engineers with immediate feedback about how their code contributions work
together with other engineers’ contributions [20]. An attractive feature of continuous
integration in outsourcing is that it enables rapid feedback without involving the client,
allowing the use of the practice even in projects in which clients do not fully embrace
agile methods. Although there is evidence linking continuous integration to higher qual-
ity and productivity in open-source development [11], there is little research examining
whether these benefits also hold in outsourcing.

Client-Vendor Knowledge Integration. A key agile practice for client-vendor knowl-
edge integration is continuous analysis, i.e., continuously triggering and incorporating
new information about requirements. The notion of triggering information about require-
ments alludes to the fact that business people often lack clarity about their requirements
at the outset of projects and trigger this information through activities such as testing
early versions of the software. They incorporate this information by revising or repri-
oritizing requirements for the next iteration. In Scrum, continuous analysis manifests
through the revision and reprioritization of the product backlog during sprint planning
and through the test of the software in the sprint review [3]. Continuous analysis is in
line with the agile manifesto principles to “[w]elcome changing requirements, even late
in development” and to “[d]eliver working software frequently” [25]. It encompasses
concepts such as iterative requirements engineering [26], dynamic prioritization [27],
agile requirements prioritization [13, 15], and iterative requirements [13]. Continuous
analysis enables client-vendor knowledge integration because it establishes a feedback
loop between requirements that result from the business knowledge primarily held by the
client and the working version of the software that results from the technical knowledge
primarily held by the vendor [17]. Although this feedback loop may be particularly valu-
able for addressing the lack of shared understanding in outsourcing, continuous analysis
may also entail contract adaption costs and opportunistic threats in outsourcing, as I will
argue later. Given this trade-off, an important unresolved challenge for practitioners is to
decide on the amount of analysis that is made up-front versus continuously throughout
a project [28].

A second key practice for client-vendor knowledge integration is joint decision mak-
ing [29], defined as the extent to which important decisions are jointly made by client
and vendor. In Scrum, joint decision making manifests in decision making by a team that
comprises not only engineers but also the product owner as a business representative
[3]. Joint decision making is related to the agile manifesto principle that “[bJusiness
people and developers must work together daily throughout the project” [25]. Although
daily interaction with business people may not always be possible in outsourced soft-
ware projects, it is possible to frequently interact in order to make important decisions
jointly, which is akin to a team-based organizing mode [14]. Joint decision making pro-
motes knowledge integration between client and vendor because it urges each party to
communicate and to incorporate the other party’s perspective when making important
decisions. While joint decision making may thus help address the frequent lack of shared
knowledge in outsourcing, it may also entail lower benefits of specialization and oppor-
tunistic threats, as I will argue later. An important unresolved issue is thus under which



60 O. Krancher

circumstances projects should leverage joint decision making versus an approach where
clients make business decisions and vendors technical decisions [28].

3 Hypotheses

Drawing on the knowledge integration perspective outlined above, this section develops
hypotheses about how the three practices and their interaction with requirements risk
affects project success. In line with prior studies on IS project success [30, 31], the
focus lies on two dimensions of success: effectiveness and efficiency. Effectiveness
(also termed product performance) refers to the degree to which the developed software
meets the client’s requirements whereas efficiency (also termed process performance)
refers to the extent to which a project is completed within time and budget [31].

3.1 Continuous Integration

Continuous integration is likely to enhance success by enabling rapid feedback within
the vendor’s development team and efficiency gains due to automation. By frequently
compiling, deploying, and testing software, vendor engineers receive rapid feedback on
their code contributions, allowing the early discovery of integration problems (within-
vendor knowledge integration). Identifying defects early has positive impact on the
quality of the delivered software (i.e., effectiveness) because it will make it easier for
developers to fix defects before go-live. Continuous integration will also have positive
impact on efficiency because problems are identified more easily when only small code
contributions are added at a time and because the automation infrastructure behind
continuous integration shortens work and wait times [32]. In outsourcing continuous
integration appears particularly suitable because it allows leveraging feedback processes
irrespective of the degree to which clients are willing to adopt agile practices.

While continuous integration is likely to have a positive main effect on project suc-
cess, this effect will be more pronounced under high requirements risk. When require-
ments are uncertain and frequently changing, this has downstream effects by making
the engineers’ work more uncertain, increasing thus the need for knowledge integration.
Continuous integration will help address this increased need by providing engineers with
rapid feedback on their code contributions. These arguments suggest:

Hla: Higher amounts of continuous integration are positively associated with success
(i.e., effectiveness and efficiency).

HI1b: The association between continuous integration and success depends on require-
ments risk such that the association is stronger when requirements risk is high.

3.2 Continuous Analysis

Unlike continuous integration, continuous analysis presents projects with a trade-off
between the benefits and the costs that arise from the practice. Continuous analysis
enables client-vendor knowledge integration by allowing clients to learn about require-
ments and their relative importance when looking at new versions of the software and



Agile Software Development Practices and Success in Outsourced Projects 61

discussing requirements with the vendor [13, 26]. In line with these ideas, a case study
reported increased client satisfaction due to continuous analysis [33].

Notwithstanding these benefits, continuous analysis practices are also associated
with two caveats. First, continuous analysis may involve a long and costly search process
where business people realize their true requirements only after developers have spent
high efforts on developing functionality that ends up discarded. In outsourced projects,
these search processes can also entail high efforts for adapting contracts [14]. Second,
frequently revising requirements introduces opportunistic threats in outsourced projects
[23]. Vendors may opportunistically leverage the fuzziness of initial specifications to
ask for generous compensation of work that was not originally anticipated.

Given these benefits and drawbacks, it is difficult to predict the net effect. However,
it is likely that the benefits and drawbacks are salient to a different degree depending
on requirements risk. Under high requirements risk, it may not be feasible to accurately
identify requirements during a detailed up-front analysis [16]. Continuous analysis will
then often be the only feasible alternative. Conversely, when requirements risk is low,
articulating requirements up-front is feasible and disciplined up-front analysis may be
more efficient that continuous analysis. This leads to the following hypothesis:

H2: The association between continuous analysis and success depends on requirements
risk such that the association is more positive when requirements risk is high than when
requirements risk is low.

3.3 Joint Decision Making

Like continuous analysis, joint decision making presents projects with a trade-off
between benefits and drawbacks of the practice. If client and vendor make key deci-
sions jointly, this entails high amounts of communication, which allows the different
stakeholders to integrate their knowledge and may lead to higher project success [34,
35]. Indeed, studies of agile software development point to the importance of close
customer collaboration [36] and of reconciling the perspectives of all participants [37].

Notwithstanding these benefits, joint decision making comes at the costs of sacrific-
ing economies of specialization and of opportunistic threats. Economies of specialization
may be sacrificed because, as indicated by the knowledge integration literature, it can
be difficult and effortful to transfer knowledge from one domain to another [17, 38].
From this perspective, joint decision making can involve high communication efforts
and the risk that the voice of the person most knowledgeable in a domain is overruled
by others. A potentially more efficient alternative can be to leave business decisions to
the client and technical decisions to the vendor. Joint decision making may also entail
opportunistic threats because vendors may, for example, falsely attribute a problem in
the software to a joint client-vendor decision rather than to their own omissions.

Like in the case of continuous analysis, the net effect of these benefits and draw-
backs is unclear. It is likely, though, that the relative size of these benefits and drawbacks
depends on requirements risk. When requirements risk is low, the need for knowledge
integration is low. It is then feasible for the client to make business decisions and for
the vendor to make design decisions based on the client’s business decisions [17]. With
each party making decisions in the area in which the party is most knowledgeable, this



62 O. Krancher

approach will ensure efficiency and accountability [14, 17]. Conversely, when require-
ments risk is high, this separation of decisions rights may not be feasible because clients
will make poor decisions about requirements at the outset, and design decisions based
on poor requirements are unlikely to yield a satisfactory software. I therefore anticipate:

H3: The association between joint decision making and success depends on requirements
risk such that the association is more positive when requirements risk is high than when
requirements risk is low.

4 Methods

4.1 Data Collection

I tested the hypotheses through a matched survey involving client sponsors reporting on
project success and vendor engineers reporting on agile practices and further variables.
A matched survey addresses concerns of common-method bias [39] and allows gather-
ing data from the informants most knowledgeable about each construct (i.e., sponsors
reporting about success, engineers reporting about agile practices). The sampling frame
were outsourced IS projects that were completed within the last 12 months. Students
and I contacted client organizations from Switzerland and Denmark. Once they agreed
to participate, they identified a list of suitable projects along with contact information
of the sponsor, the project manager (not used for this study), and a developer from the
vendor. We then invited sponsor, project manager, and developer to respond to an online
questionnaire that was specifically designed for their role (sponsor, project manager,
developer). We obtained responses from 100 sponsors and 92 engineers. Responses
matched for 65 projects. From these 65 projects, I removed 5 due to missing data or
due to unengaged responses, yielding a final sample size of 60. Table 1 shows sample
characteristics. 49 responses (82%) were from the public sector. The sample did not
include offshore projects. All projects except for 2 were single-sourcing.

Table 1. Sample characteristics

Project size # Projects | Country # Sector # Type #
$0-$100 K 12 Switzerland |40 | Public |49 |Development |38
$100K-$1 M | 33 Denmark 20 | Private |11 |Enhancement |22
$>1M 15

4.2 Instrument Development, Validation, and Estimation

Table 2 shows the final instrument. I relied on existing scales with the exception of the
continuous analysis construct for which I developed new items. In line with the definition
of continuous analysis as the continuous triggering and incorporating of information



Agile Software Development Practices and Success in Outsourced Projects 63

about requirements, the items asked about triggering (CA4-5) and incorporating (CA1-
3) information, measuring the frequency of these activities in order to capture to what
extent they were performed continuously. Following established positivist survey design
procedures [40], we performed a pretest with 6 practitioners using an item rating task
and a pilot test comprising 43 responses. [ used SmartPLS (v3.2.8) to assess the validity
of the final instrument. To establish convergent validity, I verified that average variance
extracted (AVE) was greater than .50 for all latent constructs (lowest AVE value: .56)
[41]. Moreover, all factor loadings were at least .6, with their average exceeding .7 for all
constructs [42]. To establish discriminant validity, I verified that construct correlations
were below AVE square roots [41]. Discriminant validity was also supported by the
HTMT Ratio Test [43]. Reliability was supported by Cronbach alpha values above .7
(see Table 2).

I used OLS regression to estimate the models. OLS regression has higher power
for detecting interaction effects than alternative strategies such as PLS or AMOS [44].
The regression models included several control variables. Task interdependence reflects
the degree to which development team members affect each other in their work [45].
Knowledge specificity, a construct from outsourcing research, reflects the degree to which
engineers need knowledge specific to client in order to perform their work [46]. Both high
task independence and high knowledge specificity might invite the use of agile methods
and may correlate negatively with success. It is therefore important to control for these
variables. I also controlled for project size, country (Switzerland vs. Denmark), and
sector (public vs. private), for similar reasons. As established in social science research,
I relied on hierarchical regression, where I first estimated a model with main effects and
then added interaction effects. Given the relatively small sample size of 60 (which is
largely due to the matched survey design), I considered significant effects at the p < .1
level in the analysis. I verified that the assumptions behind OLS regression were met.
Variance inflation factors were below 10 (highest value: 2.67), indicating no concern with
multicollinearity. Residual plots were in line with the pattern of a normal distribution.
Scatter plots showed no departure from linear effects.

Table 2. Survey items

Construct Items Source

Effectiveness (a = .89) The software ... [47, 48]
[Effectl] ... meets the functional
requirements®

[Effect2] ... meets end user
requirements®

[Effect3] ... fulfils technical
requirements?®

[Effect4] ... is reliable?®

[EffectS] ... meets expectations with
respect to ease of use?

(continued)



64 O. Krancher

Table 2. (continued)

Construct

Items

Source

Efficiency (a = .90)

[Effic1] All services were provided on
time?

[Effic2] The services in this project
were provided exceptionally quickly?
[Effic3] We ([client]) incurred large
unplanned efforts for coordinating and
monitoring [vendor] (reverse-coded)?
[Effic4] We ([client]) incurred large
unplanned efforts for guiding [vendor]
(rev.)?

[46, 47, 49]

Continuous integration (a = .82)

[CI1] Members of the development
team integrate code changes several
times a day?®

[CI2] The development team has a
process that generates a build of the
software several times a day?®

[CI3] The developer team is
automatically notified of any issues
related to the automated compiling,
deployment or testing of code?®

[CI4] In this project, we create the
build (i.e., an executable version of the
software such as by including
configuration files and an installer) in a
fully automated way (e.g. by using a
script or code)?

[CI5] How often does the development
team deploy code during development
phases to environments to which
[client] has no access??

(2]

Continuous analysis (o = .83)

How often do you perform the
following actions:

[CAT1] ... Adjust requirements
[CA2] ... Evaluate the priorities of
requirementsb

[CA3] ... Set the delivery scope for a
particular periodb

[CA4] ... Have software tested by
employees of [client]?

[CAS] How often does the
development team deploy code during
development phases to environments
to which [client] has access?P

b

Newly developed

(continued)



Agile Software Development Practices and Success in Outsourced Projects 65

Table 2. (continued)

Construct Items Source

Joint decision making (o = .76) | In this project, [client] and [vendor] ... | [29]
[JDM1] ... set goals together?
[JDM2] ... developed task strategies
together?

[JDM3] ... diagnosed problems
together?

[JDM4] ... evaluated deliverables
together?

Requirements risk (o = .81) This project was characterized by ... [1]
[RR1] ... continually changing scope
and system requirements

[RR2] ... unclear requirements

[RR3] ... conflicting requirements
[RR4] ... requirements not adequately
identified

4 5 point Likert scale (completely disagree, rather disagree, neutral, rather agree, fully agree)
b7 point scale (less than once a month, once a month, several times a month but not every week,
about once a week, several times a week but not every day, about once a day, more often than once
a day)

5 Results

Table 3 shows the regression results. High R? values ranging from .37 to .50 support
the explanatory power of the models. Hla predicted a positive relationship between
continuous integration and project success. As the results show, continuous integration
had no significant association with effectiveness (3 = .18, p > .1, Model 1a) but a
significant positive association with efficiency ($=.23, p<.1, Model 1b). Hla is thus
supported for efficiency but not for effectiveness. H1b predicted a positive interaction of
this relationship with requirements risk. I found a significant positive interaction effect
for effectiveness (B = .20, p < .1, Model 2a) and an insignificant interaction effect for
efficiency (8 = .02, p > .1). H1b is thus supported for effectiveness but not for efficiency.

Even though no main effects of continuous analysis were hypothesized, there was a
significant negative effect of continuous analysis (3 = —.31, p < .05) on effectiveness.
H2 predicted a positive interactive effect of continuous analysis and requirements risk
on success. The results show such a positive interaction effect for effectiveness (f = .31,
p > .05) but not for efficiency. H2 is thus supported for effectiveness.

Although not hypothesized, joint decisions had a significant main effect on efficiency
(B = .24, p < .1). H3 predicted a positive interactive effect of joint decision making and
requirements risk on success. Such a significant positive effect was found for efficiency
(B = .24, p < .1) but not for effectiveness (B = .17, p > .1).



66 O. Krancher

Table 3. Regression results

Predictor Model 1a: Model 2a: Model 1b: Model 2b:
Effectiveness, main | Effectiveness, main | Efficiency, main | Efficiency, main
effects and interaction effects and interaction

effects effects

Intercept —.06 (.28) .02 (.26) —.13(.27) —.10 (.26)

Task —.15(13) —.18 (.12) —.11(13) —.11(12)

interdependence

Knowledge —.24% (.14) —.20(.13) —.29% (.13) —.24(.13)

specificity

Project size .25 (.20) .03 (.20) 27 (.20) .07 (.20)

Public sector —.28 (.40) —.29(37) —.42(.39) —.45 (37

Switzerland .43 (.38) 44 (.35) 727 (.37) .83* (.36)

Requirements —.02(.13) .00 (.13) .04 (.13) .01 (.13)

risk

Continuous A8 (.13) 18 (L12) 237 (.13) 237 (.12)

integration

Continuous -.31*%(.12) —=.31%* (\11) —.17 (.12) —.17 (.12)

analysis

Joint decision A7 (13) 13 (12) 247 (13) 20 (.12)

making

Continuous - 207 (.11) - .02 (.11)

integration x

requirements

risk

Continuous - 31% ((13) - 19 (.13)

analysis x

requirements

risk

Joint decision - 15 (.12) - 27% (12)

making x

requirements

risk

R? 37 50 41 50

Adj. R? 26 38 30 37

F 3.26%* (9, 50) 3.97+%* (12,47) | 3.83%*%(9,50) | 3.84 (12, 47)***

(T p<.l,*p<.05 **p < .01, ¥** p < .001, n = 60, standard errors in parentheses, significant
numbers in bold, all variables standardized except for binary variables)

6 Discussion

This research was motivated by a lack of studies that examined how particular agile
practices affect the success of outsourced projects and how these effects depend on
requirements risk. I found a positive main effect of continuous integration on efficiency



Agile Software Development Practices and Success in Outsourced Projects 67

and a positive interactive effect of continuous integration and requirements risk on effec-
tiveness. The left-hand side of Fig. 1 illustrates this interaction effect. As the plot shows,
continuous integration contributes strongly to effectiveness when requirements risk is
high (i.e., one standard deviation above the sample mean, see the steep slope of the dashed
line) while continuous integration hardly contributes to effectiveness when requirements
risk is low (i.e., one standard deviation below the sample mean, see the relatively flat
solid line). By and large, these findings echo the expectation that teams hardly face a
trade-off when deciding for or against continuous integration practices. It appears that
the rapid feedback and automation efficiencies associated with continuous integration
make it easier for teams to deliver software on time and in budget. Moreover, when
requirements are uncertain and frequently changing, continuous integration helps teams
to develop software of high quality despite a volatile environment, as indicated by the pos-
itive interaction effect on effectiveness. These findings echo Vasilescu and colleagues’
[11] observation that continuous integration led to higher quality and productivity in
open-source software development while the findings extend the boundary conditions
of this effect to outsourced projects.

1
6

4

2

Effectiveness
0 .
Effectiveness
5

)

2

0
Efficiency
0

-2
-2

4
-5
4

- 1 -1
Continuous Integration Continuous Analysis Joint Decision Making

—e— Low Requirements Risk
High Requirements Risk

—— Low Requirements Risk
High Requirements Risk

—e— Low Requirements Risk
High Requirements Risk

Fig. 1. Interaction plots

I found no significant effect of continuous analysis on efficiency and a significant
negative effect on effectiveness, which is dampened under high requirements risk. The
interaction plot in the center of Fig. 1 illustrates this interaction. As the plot shows,
continuous analysis has a strong negative relationship with effectiveness under low
requirements risk (see the negative slope of the solid line) and hardly any effect on
effectiveness under high requirements risk. These results indicate that, in outsourced
projects, the drawbacks from continuous analysis dominate over its benefits, in particu-
lar in projects with low or moderate requirements risk. It seems that continuously revising
and reprioritizing requirements based on the insights gained from testing the software
is jeopardizing the quality of the software, unless in settings where requirements are
highly uncertain. Possibly, continuous analysis results in search processes where engi-
neers spend high efforts addressing requirements that turn out not to be needed, giving
thus engineers too little time to develop the features that are needed. It might also be
that vendors opportunistically shirk efforts when continuous analysis has eroded the
accountability required for contractual governance. While these findings resonate with



68 O. Krancher

the classic finding that scope creep jeopardizes project success [31], they suggest that the
positive effects of incorporating ongoing customer learning found in other settings [13,
20, 33] need not necessarily transfer to outsourced projects, where the interface between
engineers and business people is complicated by firm boundaries. It may also be that
the negative results on continuous analysis reflect the fact that 82% of the projects were
from the public sector, an environment where public tendering procedures can make it
difficult to deviate from initial specifications [50].

I found no significant effect of joint decision making on effectiveness but a sig-
nificant positive effect on efficiency, which is even stronger when requirements risk is
high. The interaction plot on the right-hand side of Fig. 1 illustrates this interaction.
While joint decision making hardly has an effect on efficiency when requirements risk
is low, it has a strong positive effect when requirements risk is high. This suggests that
clients and vendors should make important decisions jointly in those projects where
at least moderate amounts of uncertainty is surrounding software requirements. Under
these circumstances, joint decision making may help ensure that both economic and
technical concerns are taken into account when problems or modified requirements call
for new decisions to be made. These findings are in line with the benefits from tight
customer collaboration and frequent communication found elsewhere [35-37] although
my findings also show that the benefits from joint decision making fade to the extent
that requirements become more certain. Indeed, when requirements are well known, a
more classic division of decision making where the client makes business decisions and
the vendor technical decisions can be slightly more efficient according to the results.

Importantly, although both continuous analysis and joint decision making are com-
plicated by firm boundaries in outsourcing, the results indicate that joint decision making
is beneficial while continuous analysis is not. Possibly joint decision making can bet-
ter address the opportunistic threats inherent to outsourcing than continuous analysis
because it allows clients and vendors to blend their knowledge while also helping to
develop cooperative norms and giving clients control over development work without
sacrificing the accountability enabled by clear up-front requirements.

6.1 Contributions

This study makes three key contributions. First, it contributes to the discourse on agile
practices in outsourced projects. While existing work on outsourcing has provided case
study evidence [15] and developed arguments centered on geographic dispersion [14],
this paper extends existing work by providing quantitative evidence of the effects of
practices on success and by incorporating arguments of the theory-of-the-firm literature,
which focuses on opportunistic threats and knowledge barriers due to firm boundaries.
The findings reported here echo Batra’s [14] expectation that continuous integration
(or delivering working software frequently) is effective in outsourcing while continu-
ous analysis (or welcoming changing requirements) can be problematic. These findings
are also consistent with our expectation that continuous feedback processes within the
vendor team (i.e., continuous integration) are less problematic than continuous feed-
back processes that involve client and vendor (i.e., continuous analysis). Extending
Batra’s expectation that joint decision making (or business people and developers work-
ing together daily) is difficult to enact, the results show that joint decision making can



Agile Software Development Practices and Success in Outsourced Projects 69

contribute to project efficiency, making this a prime strategy for client-vendor knowledge
integration under the opportunistic threats associated with outsourcing. Taken together, a
key practical recommendation for outsourced projects is to engage in a detailed up-front
analysis akin to plan-based software development (i.e., low use of the continuous anal-
ysis practice) involving both client and vendor, while leveraging continuous feedback
during development through continuous integration practices.

Second, the paper contributes to the discourse on agile practices that involve engi-
neers and business people. While research on continuous requirements engineering has
produced important insights into zow teams can best enact continuous analysis and joint
decision making [13, 15, 26], the study at hand contributes evidence of the effects of
these practices on project success, and thus implications for whether teams should rely
on these practices in a given project. Indeed, important unresolved challenges for practi-
tioners are to decide on the amount of analysis that is made up-front versus continuously
throughout a project and on the extent parties from all business and technical domains
should be involved in decision making [28]. These questions are gaining importance
as agile practices are increasingly used in enterprise-level projects where organizations
blend agile and plan-based practices to balance the needs for control and flexibility [28,
51]. Although the findings obtained here on outsourced projects need not generalize to
other settings, they point to the potential caveats of business-facing practices, in par-
ticular continuous analysis. Moreover, this paper shows a research design that allows
empirically evaluating business-facing agile practices in other settings.

Third, this study provides some empirical justification for the largely untested asser-
tion that agile methods help cope with changing requirements. The results demonstrate
that all three agile practices have more positive effects (either on effectiveness or on effi-
ciency) when requirements risk was high. This is important evidence for teams wishing
to select the practices most likely to increase the success of a project at hand.

6.2 Strengths and Limitations

The study presented here has strengths and limitations. A strength is the matched survey
design to avoid common-method bias, which is otherwise often difficult to rule out in
survey research. A drawback of this approach was the low sample size, which implied rel-
atively low power. Another strength of the paper is the relatively high variance explained
(R? values) due to the use of control variables (e.g. knowledge specificity) that have high
explanatory power and that have rarely been used IS project research. Yet, despite the
use of powerful control variables, the correlational research design does not allow rul-
ing out endogeneity due to self-selection of agile methods. Future research could rely
on econometric techniques to allow stronger causal inference. Another limitation is the
sample, which is characterized by a high percentage of projects from the public sector.
Future research could examine whether the findings hold in sample with more projects
from the private sector. Finally, this study examined the moderating role of requirements
risk but not of other potentially relevant factors such as geographic distance, project size
and type, the client’s agile culture, and the sourcing design (e.g. multi-sourcing [52],
plural sourcing). This remains future research.



70

O. Krancher

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Keil, M., Rai, A., Liu, S.: How user risk and requirements risk moderate the effects of formal
and informal control on the process performance of IT projects. Eur. J. Inf. Syst. 22, 650-672
(2013)

Tripp, J.F., Riemenschneider, C., Thatcher, J.B.: Job satisfaction in agile development teams:
agile development as work redesign. J. Assoc. Inf. Syst. 17, 267 (2016)

Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
Beck, K.: Embracing change with extreme programming. Computer 32, 70-77 (1999)
Dingsgyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards
explaining agile software development. J. Syst. Softw. 85, 1213-1221 (2012)

Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176-189 (2017)

Maruping, L.M., Venkatesh, V., Agarwal, R.: A control theory perspective on agile
methodology use and changing user requirements. Inf. Syst. Res. 20, 377-399 (2009)
Serrador, P., Pinto, J.K.: Does agile work?—A quantitative analysis of agile project success.
Int. J. Proj. Manag. 33, 1040-1051 (2015)

Kude, T., Mithas, S., Schmidt, C.T., Heinzl, A.: How pair programming influences team
performance: the role of backup behavior, shared mental models, and task novelty. Inf. Syst.
Res. 30, 1145-1163 (2019)

Recker, J., Holten, R., Hummel, M., Rosenkranz, C.: How agile practices impact customer
responsiveness and development success: a field study. Proj. Manag. J. 48, 99-121 (2017)
Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productivity outcomes
relating to continuous integration in GitHub. Presented at the Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (2015)

Tripp, J.E., Armstrong, D.J.: Agile methodologies: organizational adoption motives, tailoring,
and performance. J. Comput. Inf. Syst. 58, 170-179 (2018)

Inayat, 1., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915-929 (2015)

Batra, D.: Modified agile practices for outsourced software projects. Commun. ACM 52,
143-148 (2009)

Daneva, M., etal.: Agile requirements prioritization in large-scale outsourced system projects:
an empirical study. J. Syst. Softw. 86, 1333-1353 (2013)

Walz, D.B., Elam, J.J., Curtis, B.: Inside a software design team: knowledge acquisition,
sharing, and integration. Commun. ACM 36, 63-77 (1993)

Tiwana, A.: Beyond the black-box: knowledge overlaps in software outsourcing. IEEE Softw.
21, 51-58 (2004)

Krancher, O., Dibbern, J.: Knowledge in software-maintenance outsourcing projects: beyond
integration of business and technical knowledge. Presented at the 48th Hawaii International
Conference on System Sciences (2015)

Krancher, O., Dibbern, J.: Learning software-maintenance tasks in offshoring projects:
a cognitive-load perspective. In: Proceedings of the 33rd International Conference on
Information Systems, pp. 1-18 (2012)

Krancher, O., Luther, P., Jost, M.: Key affordances of platform-as-a-service: self-organization
and continuous feedback. J. Manag. Inf. Syst. 35, 776-812 (2018)

Kogut, B., Zander, U.: What firms do? Coordination, identity, and learning. Organ. Sci. 7,
502-518 (1996)

Dibbern, J., Winkler, J., Heinzl, A.: Explaining variations in client extra costs between
software projects offshored to India. MIS Q. 32, 333-366 (2008)



23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Agile Software Development Practices and Success in Outsourced Projects 71

Williamson, O.E.: The economics of organization: the transaction cost approach. Am. J.
Sociol. 87, 548-577 (1981)

Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Pearson Education, Boston (2010)

Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 28-35 (2001)

Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE
Softw. 25, 60-67 (2008)

Highsmith, J., Cockburn, A.: Agile software development: the business of innovation.
Computer 34, 120-127 (2001)

Cobb, C.G.: The Project Manager’s Guide to Mastering Agile: Principles and Practices for
an Adaptive Approach. Wiley, Hoboken (2015)

Lin, T., Hsu, J.S., Cheng, K., Wu, S.: Understanding the role of behavioural integration in
ISD teams: an extension of transactive memory systems concept. Inf. Syst. J. 22, 211-234
(2012)

Gopal, A., Gosain, S.: The role of organizational controls and boundary spanning in software
development outsourcing: implications for project performance. Inf. Syst. Res. 21, 1-23
(2010)

Wallace, L., Keil, M., Rai, A.: How software project risk affects project performance: an
investigation of the dimensions of risk and an exploratory model. Decis. Sci. 35, 289-321
(2004)

Krancher, O., Luther, P.: Software development in the cloud: exploring the affordances of
platform-as-a-service. Presented at the 36rd International Conference on Information Systems
(2015)

Dagnino, A., Smiley, K., Srikanth, H., Ant6n, A.L., Williams, L.A.: Experiences in applying
agile software development practices in new product development. Presented at the IASTED
Conference on Software Engineering and Applications (2004)

Espinosa, J.A., Nan, N., Carmel, E.: Temporal distance, communication patterns, and task
performance in teams. J. Manag. Inf. Syst. 32, 151-191 (2015)

Krancher, O., Dibbern, J., Meyer, P.: How social media-enabled communication awareness
enhances project team performance. J. Assoc. Inf. Syst. 19, 813-856 (2018)

Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile software
development projects. J. Syst. Softw. 85, 1222-1238 (2012)

Drury, M., Conboy, K., Power, K.: Obstacles to decision making in agile software development
teams. J. Syst. Softw. 85, 1239-1254 (2012)

Grant, R.M.: Toward a knowledge-based theory of the firm. Strategy Manag. J. 17, 109-122
(1996)

Podsakoff, PM., MacKenzie, S.B., Lee, J.-Y., Podsakoff, N.P.. Common method biases in
behavioral research: a critical review of the literature and recommended remedies. J. Appl.
Psychol. 88, 879-903 (2003)

MacKenzie, S.B., Podsakoff, P.M., Podsakoff, N.P.: Construct measurement and validation
procedures in MIS and behavioral research: integrating new and existing techniques. MIS Q.
35,293-334 (2011)

Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables
and measurement error. J. Mark. Res. 18, 39-50 (1981)

Straub, D., Boudreau, M.-C., Gefen, D.: Validation guidelines for IS positivist research.
Commun. Assoc. Inf. Syst. 13, 63 (2004)

Henseler, J., Ringle, C.M., Sarstedt, M.: A new criterion for assessing discriminant validity
in variance-based structural equation modeling. J. Acad. Mark. Sci. 43, 115-135 (2015)
Goodhue, D., Lewis, W., Thompson, R.: Research note-statistical power in analyzing inter-
action effects: questioning the advantage of PLS with product indicators. Inf. Syst. Res. 18,
211-227 (2007)



72

45.

46.

47.

48.

49.

50.

51.

52.

O. Krancher

Langfred, C.W.: Autonomy and performance in teams: The multilevel moderating effect of
task interdependence. J. Manag. 31, 513-529 (2005)

Dibbern, J., Chin, W.W., Kude, T.: The sourcing of software services: knowledge specificity
and the role of trust. ACM SIGMIS Database 47, 36-57 (2016)

Lee, G., Xia, W.: Toward agile: an integrated analysis of quantitative and qualitative field data
on software development agility. MIS Q. 34, 87-114 (2010)

Liu, S.: Effects of control on the performance of information systems projects: the moderating
role of complexity risk. J. Oper. Manag. 36, 4662 (2015)

Krancher, O., Kotlarsky, J., Oshri, 1., Dibbern, J.: How formal governance affects multisourc-
ing success: a multi-level perspective. Presented at the Thirty Ninth International Conference
on Information System (2018)

Stiirmer, M., Krancher, O., Myrach, T.: When the exception becomes the norm: direct awards
to IT vendors by the swiss public sector. Presented at the 10th International Conference on
Theory and Practice of Electronic Governance (2017)

Dingsgyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier. IEEE Softw.
36, 30-38 (2019)

Oshri, 1., Dibbern, J., Kotlarsky, J., Krancher, O.: An information processing view on joint
vendor performance in multi-sourcing: the role of the guardian. J. Manag. Inf. Syst. 36,
1248-1283 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

On the Use of Design Thinking: A Survey
of the Brazilian Agile Software
Development Community

Matheus Prestes!, Rafael Parizi'3(®3) Sabrina Marczak®, and Tayana Conte?

L MunDDoS Research Group — School of Technology, Pontificia Universidade do Rio
Grande do Sul (PUCRS), Porto Alegre, Brazil
matheus.plautz@edu.pucrs.br, rafael.parizi@edu.pucrs.br,
sabrina.marczak@pucrs.br
2 Instituto de Computagio, Universidade Federal do Amazonas (UFAM),
Manaus, Brazil
tayana@icomp.ufam.edu.br
3 Instituto Federal de Educacéo, Ciéncia e Tecnologia Farroupilha (IFFAR),

Sao Borja, Brazil

Abstract. Design Thinking (DT) has been chosen as an approach
to support problem-solving by many software development companies.
However, there are divergences between the professionals of these com-
panies concerning which techniques are performed, which steps are fol-
lowed, and the way to implement this approach, as it proposes itself, to
be divergent to generate numerous alternatives and, also, convergent, to
find a solution. For this reason, aiming to characterize how the software
companies have been implemented DT, this paper presents the results
of a survey answered by 127 professionals from the Brazilian software
industry. The results report a variety of scenarios in which DT has been
applied: more than ten different models (sets of steps) are followed by
the professionals; more than 50 techniques have been used, mainly, for
meeting the needs in the process, according to the context of use and
based on previous experiences. We also present 29 computational tools
that, according to the respondents, assist the execution of DT, in addi-
tion to the integration with agile methods, allowing them to generate
ideas and solutions, to explore and understand the problem.

Keywords: Agile - Design Thinking + Industry professionals - Survey

1 Introduction

Design Thinking (DT) seeks to solve problems through design principles, explor-
ing possible user needs and validating solution proposals through prototypes. It
is used in software development to foster creativity and innovation in the genera-
tion of new features and products, as well as DT has been chosen as an approach
to problem-solving by many software development companies [1,2].

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 73-86, 2020.
https://doi.org/10.1007/978-3-030-49392-9_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_5

74 M. Prestes et al.

By bringing the user needs to the center, DT also improves team communica-
tion and facilitates knowledge domain acquisition, which are well-known issues in
software development [3]. Given its interactive and dynamic nature, DT is con-
sidered an easy-in integration and a way to boost agile development [4]. While
the focus of DT is on the creation of various prototypes identify the better solu-
tion, Agile methods are concerned with uncertainties and risks at the beginning
of the development process, seeking to develop software incrementally, deliver-
ing the product as soon as possible [5]. Using DT integrated with Agile methods
fosters a better alignment of the expectations of both customers and developers.
Also, this integration helps to gather the needs of customers in the early stages
of software development, ensuring the usability of the software [6].

DT have a flexible structure according to the company’s business logic [7].
Therefore, it is important to understand if there is a script to be followed when
DT is applied to software development contexts like process model to be followed,
techniques to support the model steps, tools, artifacts, and roles involved.

Literature contains gaps about how industry professionals have made use
of DT in software development. Thus, we executed a survey to identify which
models and techniques and tools the professionals are using, reasons for choosing
DT, usage scenarios, and the benefits and difficulties of applying DT.

The main contributions of this papers are (i) discuss about the use of DT
into software project, summarizing which techniques are most used, what models,
phases, and steps are performed to understand the user’s necessities and to create
innovative software, and; (ii) know the integration of DT in agile methods by
professionals in the Brazilian software development industry.

This paper is structured as follows: Sect. 2 shows earlier studies about Design
Thinking and agile software development; Sect. 3 presents the methodology we
conducted to achieve our goals, describing in details how we had performed the
survey; Sect. 4 exposes the outcomes after the survey application and the results’
discussion. Finally, in Sect. 5 we conclude our research showing future actions to
gathering new and relevant results.

2 Earlier Studies on Agile and Design Thinking

DT is used to create innovative projects for human-centered design [8]. As a
property of DT, we have a multidisciplinary strategy, with techniques and prac-
tices that can be applied to many types of project, as well as focused on satisfying
the expectations of users of the product/service developed based on its structure
[9]. Brown (2008) [8] also reports that DT fits the use of designers empathy to
address what is technologically suitable and feasible when proposing a solution.
Considering the integration between Agile and DT, there is a vast literature
in the field of Software Engineering, since DT allows the search for a solution
oriented to meet the user’s needs, while agile methods are strongly collabora-
tive, focused on characteristics such as speed, simplicity, continuous and fast
deliveries, frequent feedback collection and quick reaction to changes [10-17].
Rhinow and Meinel [18] present an empirical study to evaluate the integration
of DT in large corporations with frameworks such as Lean and Scrum, consulting



Design Thinking and Software Engineering: A Survey in the Industry 75

the expectations of project managers through 50 interviews. The results pointed
that DT fosters teamwork associating value with deliveries and the continuous
improvement of the process, aligned with the philosophy of Lean. In relation
to development projects, managers realize that DT encourages the inclusion of
visual representation of the need (prototype), the definition of a business model
and a complete definition of the activities necessary to produce the appropriate
solution (user story map).

Nedeltcheva and Shoikova [19] presented a study about DT combined with
Scrum claiming that DT helps to understand what needs to be done, while Scrum
gives autonomy to decide how to do it. They also argue that DT and Scrum
are similar because both are iterative, requiring adopters to develop sufficient
insights to recognize initial successes and failures through constant evaluation
and adaptation. The study present a set of advantages of the integration of
both methodologies, such as help to create products or services which meet the
current user needs, and that organizations can reduce risks from the development
achieving better results for their efforts.

Prasad et al. [16] attempted to answer how to apply DT practices to improve
customer expectations in Agile process. They conducted 15 interviews with
industry professionals from organizations in Sri-Lanka, resulting in a set of best
practices, which were classified into five areas, such as (a) customer’s real need
identification; (b) transforming customer’s real needs into pilot solutions, (c)
visualizing the pilot solution for customer feedback; (d) idea generation for the
pilot solution, and; (e) brainstorming. As a result of the research, they proposed
a framework as a way to help organizations enhance customer satisfaction using
design thinking practices in agile practices, involving activities that comprise the
five major defined areas.

The study of Darrin and Devereux [5] discusses the impacts of the application
of Agile and DT principles in systems development processes. Mapping Design
Thinking, Agile Manifesto and System Engineering, the authors report that these
approaches act to more actively incorporating the users in the whole product
and process development, including some practical implications such as a better
customer engagement with the team; the requirements releases would result as an
iterative process; and the process in an iterative way provides the generation of
multiple design and implementation options, supporting the agility and reducing
risks and uncertainties.

Pereira and Russo [6] present a literature review to evaluate how DT is
integrated with Agile methodologies, selecting 29 studies which report that the
integration of these approaches is applied throughout the development cycle,
being the Scrum the most commonly Agile method used. Also, the integration
between Design Thinking and Agile has shown that the customers are satisfied
with the products developed and their needs are fulfilled, as well as there is an
improvement of usability, supporting the proper management of challenges or
requirements discovering.

Our work reports a study that seeks to characterize how professionals in
the software development community, based on Agile methods, use DT in their



76 M. Prestes et al.

processes, presenting which techniques, models, phases, and steps are performed.
Therefore, our research provides an overview of the use of DT, going beyond the
works already presented in the literature.

3 Research Setting

Looking for answers to know how industry professionals have used Design Think-
ing, we developed a survey to seek a more in-depth understanding of the Brazil-
ian software development community. The survey developed in this work is
characterized as explanatory [20,21], seeking understanding of the phenomenon
through the information collected.

In this section, we start presenting how we carried out the planning and
design of the survey, proceeding with it’s prior validation, and after we describe
details of the execution. In Sect.4 we show the outcomes gathered with our
survey, discussing the findings.

3.1 Planning, Design and Prior Validation

We built this survey as a mechanism aimed at deepening the knowledge about
the use of DT by the industry. We started to build the questionnaire containing
11 questions as a data collection instrument, using the Qualtrics' tool. Table 1
shows the questionnaire structure, where the respondents initially answer ques-
tions related to DT, such as DT methods, techniques, and tools (Block 1), and
purposes, contexts, benefits and difficulties to using DT (Block 2). Finally, we
questioned the professionals about their jobs, in order to draw a profile of the
respondents (Block 3). The questions of the survey were created based on data
gathered previously through a systematic literature mapping.

Before conducting the survey distribution to the defined target audience, we
performed a prior validation process. Following the recommendations given by
Kitchenham [22] about empirical research, a pilot test was performed for evaluate
the consistency and correctness of our survey.

3.2 Execution

Following the survey’s planning and design process, we defined the target audi-
ence, who should be professionals working with DT in the software development
process. We define as a strategy to reach out to such professionals and to elec-
tronically distribute the questionnaire, the use of the professional-oriented social
network, the LinkedIn?.

In LinkedIn we apply filters to find the professionals who serve the target
audience, according to the strings: “design thinking” and “software” and “design
thinking”, filtering by Brazilian nationality.

! Available in: https://www.qualtrics.com.
2 Available in: https://www.linkedin.com.


https://www.qualtrics.com
https://www.linkedin.com

Design Thinking and Software Engineering: A Survey in the Industry 7

Table 1. Questionnaire structure

# ‘ Question Type
Block 1
1 | There are several process models, which abstract workspaces when Closed

using Design Thinking. Do you use any of these models as a reference
in your activities?

2 | Several techniques can be used to support the use of Design Thinking. | Closed
What techniques do you usually use?
3 | How do you usually decide which techniques to use? Closed

4 | On a scale of 0 (No difficulty) to 10 (Extreme difficulty), how difficult | Closed
do you feel in deciding which techniques to use in a given situation?

5 | Do you use any software (or computer system, as you prefer to call it) | Closed
to support the use of Design Thinking techniques?

Block 2

6 | For what purpose do you use Design Thinking in software development? | Closed

7 | What are the common usage scenarios where you use Design Thinking? | Closed

8 |In your experience of using DT in software development, what would Open
you point out as benefits or positives brought about by adopting the

approach?
9 | And what would be the difficulties or the negative points? Open
Block 3
10 | What is your experience, in years, using Design Thinking? Closed
11 | What is your current organizational role or function? Open
4 Results

The survey’s period ranged from September 2019 to December 2019. During this
time, the survey request was sent to 466 professionals, resulting in 149 partici-
pants, of which 127 answered the questionnaire until the end. The response rate
was 31,97%. The “n” is variable because not all questions were required, so some
may contain fewer answers. As shown in Table 1, we have divided the structure
of the questionnaire into 3 blocks. To present the profile of the respondents, we
first describe about the background information of them.

4.1 The Respondents’ Profiles

Respondents were asked about their experience in years of using DT. Table 2
illustrates the professional’s experience organized in absolute and percentage
values. The largest number of respondents (60 respondents = 47,24%) reported
having between 1 and 3 years of experience using DT. Considering those with
more than 4 years of experience, we reach to 39 respondents (30,71%).

They were also asked about their position in organization. Most consider
themselves a Agile Coach, with a total of 18 answers (14,17%), the second as a



78 M. Prestes et al.

Table 2. Years of experience

Answer n | (%)
Less than 1 |28 | (22,05)
1-3 60 | (47,24)
47 32 | (25,20)
More than 7| 7 |(05,51)
Total 127 | 100%

Table 3. Respondents’ position in organization

Position n [ (%) Position n | (%)
Agile Coach 18 | (14,17) | Analist 51(3,94)
UX/UI Designer |17 |(13,39) | Engineer 51(3,94)
Facilitator 16 | (12,60) | Developer 51(3,94)
Product Owner | 12(9,45) | Researcher 11(0,79)
Expert 10| (7,87) | Other? 30 (23,62)
Consultant 8(6,30) | Total 127 | 100%

UX/UI Designer (17 respondents = 13,39%), and in third place as a Facilitator
(16 respondents = 12,60%), as shown in Table 3. Also, 30 respondents (23,62%)
pointed out the option “Other”. These subset of professionals includes positions
such as Product Managers, Development Coordinators, and Process Analysts.
This result shows how expressive it is to professionals’ positions and the use of
DT in software development.

After knowing the profile of the professionals who answered the survey, know-
ing their level of experience on the subject, and their use of DT in their activities,
we did an individual analyze of each question presented in the questionnaire,
starting with the questions about DT methods, techniques, and tools.

4.2 DT Models, Techniques, and Tools

Respondents were asked about which models they follow in the application of
DT. Table4 shows the results, and in this question, it was possible to choose
more than one model, because we consider that more than one model can be
used by an organization, even in the same project. The proposed models were
extracted from the literature [23].

The four models that were chosen by more than 10% of respondents were: (i)
Divergent and Convergent (93 respondents = 72,44%); (ii) Stanford d.school (72
respondents = 56,69%); (iii) Stanford d.School integrated with Hasso Plattner
Institute (HPI) (58 respondents = 45,67%), and; (iv) Hasso Plattner Institute
(HPI) (47 respondents = 37,01%). On the option “other”, were mentioned the
Stanford d.School model integrated with Convergence and Divergence; Double
Diamond; Massachusetts Institute of Technology (MIT) approach; and a model
created by the respondent’s own company.



Design Thinking and Software Engineering: A Survey in the Industry 79

Table 4. Models used by the respondent’s

Model n | (%) Model n | (%)
Divergent Convergent [24] 93 |(72,44)  Meinel and Leifer [25] |13 | (10,24)
Stanford d.School [26] 72 (56,69) HCAW** [27] 11 (8,66)
Stanford d.School + HPI [28] | 58 | (45,67) | Diving board [29] 10 | (7,87)
HPI* [30] 47 | (37,01) Sandino [31] 8 (6,30)
Brown [32] 30 |(23,62) | Other 6 |(4,72)
Nordstrom [33] 22 |(17,32) | I don’t know (2,63)
IBM Model [34] 19 | (14,96) | Total 391

* Hasso Plattner Institute
** Human Centered Agile Workflow

Table 5. 10 most chosen techniques

Technique n | (%)

Brainstorming 119 | (88,15)
Personas 118 | (87,41)
Empathy Maps 97| (71,85)
Costumer Journey Maps 94 | (69,63)
Business Model Canvas (BMC) | 87| (64,44)
Interview 841 (62,22)
Storytelling 84 (62,22)
User story 83 (61,48)
Observation 81 (60,00)
Storyboard 81 | (60,00)

We also asked what techniques are commonly used during DT application
sessions. To do so, we presented 46 techniques that we brought from the litera-
ture and even allowed new techniques to be mentioned, if they existed. Table 5
presents the top 10 techniques most chosen by respondents, the three most
selected being Brainstorming (119 respondents = 88,15%); Personas (118 respon-
dents = 87,41%), and; Empathy Maps (97 respondents = 71,85%).

All 46 techniques that were made available to respondents in the survey were
selected by at least two of them. In addition, 11 new techniques were suggested
by the participants. Thus, there are a total of 59 different techniques that provide
aid to the application of DT in software development, as well as shows that there
is a great variation between the techniques.

In this way, considering this wide range of techniques, we questioned the
reasons that lead the professional to choose a particular technique over others
(Table 6). The respondents reported that the most determining reason for choos-
ing a particular technique is that it fits their needs (109 respondents = 85,83%);
they choose according to the context in which they are working (101 respondents



80 M. Prestes et al.

Table 6. Reasons for choosing techniques

Reason of chosen n (%)
When the technique fits my need 109 | (85,83)
It depends a lot on the context I am going to use 101 | (79,53)
Based on my previous experience 99 | (77,95)
I choose the techniques according to the DT space/step, where each | 82 |(64,57)
space/step has its own techniques

Recommendation by my company 24 | (18,90)
By referral from a colleague 22 | (17,32)
I already have my catalog of techniques that I always use 19 | (14,96)
I usually need to study the techniques because I never know which one | 13 |(10,24)
is best for the moment

Another reason? 3 1(2,36)

= 79,53%); they choose based on previous experience (99 answers = 77,95%);
and the respondents choose the techniques according to DT space/step, where
each space/step has its own techniques (82 answers = 64,57%).

Having known the reasons that lead to the choice of techniques, we had
questioned how difficult it is to make this choice, to make this decision. We
therefore asked what is the difficulty level for the choice, ranging from 0 (slightly
difficult) to 10 (extremely difficult). The result obtained for this questions was an
average of 4,55 difficulty of choosing the techniques, with a standard deviation of
2,23, which indicates that there is considerable variability in terms of difficulty
of choice and it is considered that It is not an easy task to do.

And, to conclude the information on DT models, techniques, and technolo-
gies, we encouraged respondents about the computational tools that support the
process. Respondents presented a set of 29 different tools that help their work
and application of DT techniques for different activities. Table 7 shows the com-
putational tool set. We can conclude that there is no specific software focused on
DT and its tasks, since it is a methodology composed of different actions aimed
at fostering creativity.

<

4.3 Purposes, Contexts, Benefits and Difficulties to Using DT

Here, our intention was to discover the reasons that led to the choice of adopting
DT in the company’s processes, in which contexts DT has been applied, the
benefits of its use, and what makes application/use of DT a difficult task.
Initially, we questioned about the reasons that lead professionals to use DT.
The three most selected answers were (i) to generate ideas and solutions (120
respondents = 94,49%); (ii) to explore and understand the problem (113 respon-
dents = 88,98%), and; (iii) to create innovative ideas, and to reduce uncertain-
ties (both with 89 respondents = 70,08%) (Table 8). This question was multiple



Design Thinking and Software Engineering: A Survey in the Industry 81

Table 7. Tools used by the respondents

Tools

Marvel app Build Ilustrator

Paint Canvanizer Photoshop

Evrybo Google Sheets SAPBuild

Xmind-Stakeholder map | Adobe XD Smaply

Miro Google presentation | Strategyzer

Whimsical POP Axure RP

Figma Mindmeister Touchpoint dashboard

Mural Invision Creately

Real Time Hotjar Circle

Muraly Survey Monkey

Total 29 tools

Table 8. Purposes to use DT

Purpose n (%)
To generate ideas and solutions 120 | (94,49)
Explore and understand the problem 113 | (88,98)
To create innovative ideas 89 | (70,08)
To reduce uncertainties 89 | (70,08)
Understand and specify requirements 84 |(66,14)
Improve customer satisfaction 75 |(59,06)
Bring the development team closer to the customer | 72 | (56,69)
Easy relationship with agile methods 57 |(44,88)
Win user’s empathy 53 | (41,73)
Software Validation 40 | (31,50)
To manage projects 16 | (12,60)
For game development 5 1(3,94)
Other? 2 | (1,57)
Total 815

choice, i.e. the respondent could choose more than one answer, as DT can be
applied for more than one reason (Table 8).

In addition to the purposes listed in the Table8, DT has also been charac-
terized for assisting agile methods, and as a mechanism for strategic planning,
industrial problems, complex problems, adjustments, and process improvements.

We also explored in which scenarios DT is applied on software development.
Table 9 shows the professionals understanding that DT is mostly used in mul-
tidisciplinary team scenarios (107 respondents = 84,25%); to create innovative



82 M. Prestes et al.

Table 9. Scenarios of use of DT
Scenario n (%)
With multidisciplinary teams 107 | (84,25)
Creation of innovative products/software 94 | (74,02)
Used in partnership with Agile Methods (Lean, Scrum) 92 | (72,44)
Create co-creation among project participants 79 | (62,20)
Innovation as a whole, from the development process to software 71 | (55,91)
Changes and improvements in software development 51 |(40,16)
Within a daily /weekly software development process, accompanied by | 39 | (30,71)
the entire team (from client to developer)
Other? 6 | (4,72)
Total 539

products/software (94 respondents = 74,02%), and; used in partnership with
Agile methods 92 respondents = 72,44%).

We asked the respondents about the benefits of adopting DT in their projects.

They pointed out as a benefit that DT seeks to understand the users in detail
and fosters creativity.

Their answers related to benefits for the users were:

Keep the user at the center of the process without neglecting business needs;
Greater empathy with the user;

Focus on customer need;

High user collaboration;

Understanding customer pains;

Closeness of the technical team with the customer;

Reach endpoint user.

Finally, we asked about the difficulties faced by professionals to apply DT in

their software projects. The following quotes were cited:

Match project to time and scope;

Adapting people to use methods;

Detachment of solutions (contributors already come with the solution and
not with a real understanding of the problem);

Transform qualitative data into data valid for the corporate environment;
In evolution projects with very defined scope (such as migration/
modernization), Design Thinking is not very applicable

Projects with very defined architecture (with third party technologies or tools)
also make it challenging to use DT because in these situations there is little
room for innovation;

Not always does the customer have the time to know the problem in-depth;
Lack of experience driving the design.



Design Thinking and Software Engineering: A Survey in the Industry 83

4.4 Discussion

Based on the results of the survey, there is a variety to choose DT models to
follow, the techniques to be used, the software that supports the activities. Also,
it is important to consider that the respondents argued they have difficulties
to choose some techniques to apply in DT sessions. This highlights the issue of
DT being dynamic, allowing adaptations during the course of its development,
considering the profile of the participants, with the needs of the client, and with
the context of carrying out the techniques.

Other important point is to consider the integration between DT and Agile
methods, since 92 of the respondents answered that in their organizations DT is
used integrated with Agile, indicating that approximately 3/4 of the companies
represented by the participants integrate both approaches (Table9).

Regarding the benefits of using DT, we can identify that the user is defined
as the center of attention, with the development team being responsible for
meeting the needs of this user, showing that the industry understands that DT
in software development is an user-centered approach.

In another scenario, DT carries with it difficulties inherent in the integration
and collaboration of different professionals in a multidisciplinary way. This issue
is clear when we analyze the difficulties in applying DT, such as match the
project to time and scope; adapting people to use methods; not always does the
customers have the time to know the problem in-depth, or they think they know
what is the best solution previously, among others.

5 Concluding Remarks and Perspectives

This paper presents a survey to know about the use of DT in software devel-
opment by industry professionals. As a result, 127 responses from professionals
working in the Brazilian software development industry were registered, which
allowed us to advance the literature in the field of software engineering.

The survey’s answers show the experience of the professionals, their job pro-
files, how they use the techniques and methods of DT. We also discovered that
the most used model is the Divergent Convergent method, as well as a wide range
of techniques and computational tools, in addition to those previously presented
in the literature. The results indicated too that 3/4 of the companies develop
DT integrated with Agile methods, considering like the main proposals to use
DT: to generate ideas and solutions; to explore and understand the problem,
and; to create innovative ideas.

We presented in this article the main benefits of using DT, according to the
participants, including keeping the user at the center of the process without
neglecting business needs; greater empathy with the user; focus on customer
needs, among others. On the other hand, we listed the difficulties for the appli-
cation of Design Thinking, being the most important ones, according to the
participants: (i) matching project to time and scope; and (ii) preparing people
to use it.



84 M. Prestes et al.

Our work presents as limitations that we cannot generalize to the entire
universe of software development since we conducted the survey only in the
Brazilian scenario, and answers may only represent the respondent’s view and
not the whole organization of which they are part. Nevertheless, these limita-
tions represent opportunities to replicate this survey in different countries. These
replications would allow the community to build a more broad view of DT usage
and its integration with agile methods.

Our future work is the creation of a mechanism to collaborate with the deci-
sion making in terms of which techniques to select when using DT, as well as
deepening the survey in other communities and other countries besides Brazil.

Acknowledgement. This study was partially financed by the Coordenagao de Aper-
feicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.

References

1. Hehn, J., Uebernickel, F.: The use of design thinking for requirements engineering:
an ongoing case study in the field of innovative software-intensive systems. In:
Proceedings of International Requirements Engineering Conference (RE), pp. 400—
405. IEEE (2018)

2. Kolko, J.: Design thinking comes of age (2015)

3. Hiremath, M., Sathiyam, V.: Fast train to DT: a practical guide to coach design
thinking in software industry. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson,
J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8119, pp. 780-787. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40477-1_53

4. Liikkanen, A.L., Kilpio, H., Svan, L., Hiltunen, M.: Lean UX: the next generation
of user-centered agile development? In: Proceedings of the Nordic Conference on
Human-Computer Interaction, pp. 1095-1100 (2014)

5. Darrin, M.A.G., Devereux, W.S.: The agile manifesto, design thinking and sys-
tems engineering. In: Proceedings of the International Systems Conference, Que-
bec, Canada, pp. 1-5. IEEE (2017)

6. Pereira, J., Russo, R.: Design thinking integrated in agile software development:
a systematic literature review. Procedia Comput. Sci. 138, 775-782 (2018). Pro-
ceedings of the International Conference on Health and Social Care Information
Systems and Technologies

7. Brown, T., Katz, B.: Change by design. J. Prod. Innov. Manag. 28(3), 381-383
(2011)

8. Brown, T.: Definitions of design thinking. Harv. Bus. Rev. 86(6), 84 (2011)

9. Vianna, M.: Design Thinking: inovagao em negécios. MJV Press, Rio de Janeiro
(2012)

10. Sohaib, O., Solanki, H., Dhaliwa, N., Hussain, W., Asif, M.: Integrating design
thinking into extreme programming. J. Ambient Intell. Humaniz. Comput. 10(6),
2485-2492 (2018). https://doi.org/10.1007/s12652-018-0932-y

11. Jensen, M.B., Lozano, F., Steinert, M.: The origins of design thinking and the
relevance in software innovations. In: Abrahamsson, P., Jedlitschka, A., Nguyen
Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS,
vol. 10027, pp. 675-678. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49094-6_54


https://doi.org/10.1007/978-3-642-40477-1_53
https://doi.org/10.1007/s12652-018-0932-y
https://doi.org/10.1007/978-3-319-49094-6_54
https://doi.org/10.1007/978-3-319-49094-6_54

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Design Thinking and Software Engineering: A Survey in the Industry 85

Gurusamy, K., Srinivasaraghavan, N., Adikari, S.: An integrated framework for
design thinking and agile methods for digital transformation. In: Marcus, A. (ed.)
DUXU 2016. LNCS, vol. 9746, pp. 34-42. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40409-7_4

Nedeltcheva, G.N., Shoikova, E.: Coupling design thinking, user experience design
and agile: towards cooperation framework. In: Proceedings of the International
Conference on Big Data and Internet of Thing, pp. 225-229. ACM (2017)
Coutinho, E.F.; Gomes, G.A.M., José, M.L.A.: Applying design thinking in disci-
plines of systems development. In: Proceedings of the Euro American Conference
on Telematics and Information Systems, pp. 1-8. EATIS (2016)

De Souza, R.A.C., de Azevedo Cysneiros Filho, G.A., Batista, G.H.C.: A heuristic
approach for supporting innovation in requirements engineering. In: Proceedings of
the Iberoamerican Conference on Software Engineering, Lima, Peru, p. 674 (2015)
Prasad, W.R., Perera, G., Padmini, K.J., Bandara, H.D.: Adopting design think-
ing practices to satisfy customer expectations in agile practices: a case from Sri
Lankan software development industry. In: Proceedings of the Moratuwa Engineer-
ing Research Conference, pp. 471-476. IEEE (2018)

Corral, L., Fronza, I.: Design thinking and agile practices for software engineering:
an opportunity for innovation. In: Proceedings of the Annual SIG Conference on
Information Technology Education. SIGITE 2018, New York, NY, USA. Associa-
tion for Computing Machinery, pp. 26-31 (2018)

Rhinow, H., Meinel, C.: Design thinking: expectations from a management per-
spective, pp. 239-252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
01303-9-15

Nedeltcheva, G.N., Shoikova, E.: Coupling design thinking, user experience design
and agile: towards cooperation framework. In: Proceedings of the International
Conference on Big Data and Internet of Thing, BDIOT2017, New York, NY, USA.
Association for Computing Machinery, pp. 225-229 (2017)

Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research: part 1: turning
lemons into lemonade. ACM SIGSOFT Softw. Eng. Notes 26(6), 16-18 (2001)
Kasunic, M.: Designing an effective survey. Technical report, Carnegie-Mellon Uni-
versity Pittsburgh PA Software Engineering Institute (2005)

Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721-734 (2002)

Souza, A., Ferreira, B., Conte, T.: Aplicando design thinking em engenharia de
software: um mapeamento sistematico. In: Proceedings of the Iberoamerican Con-
ference on Software Engineering, Buenos Aires, Argentina (2017)

Adikari, S., McDonald, C., Campbell, J.: Reframed contexts: design thinking for agile
user experience design. In: Marcus, A. (ed.) DUXU 2013. LNCS, vol. 8012, pp. 3—12.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39229-0_1
Keighran, H., Adikari, S.: Developing high-performing teams: a design thinking led
approach. In: Marcus, A. (ed.) DUXU 2016. LNCS, vol. 9746, pp. 53-64. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40409-7_6

Mutuku, L.N., Colaco, J.: Increasing Kenyan open data consumption: a design
thinking approach. In: Proceedings of the International Conference on Theory and
Practice of Electronic Governance, ICEGOV 2012, pp. 18-21. ACM New York
(2012)

Glomann, L.: Introducing ‘human-centered agile workflow’ (HCAW) — an agile
conception and development process model. In: Ahram, T., Falcao, C. (eds.) AHFE
2017. AISC, vol. 607, pp. 646-655. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-60492-3_61


https://doi.org/10.1007/978-3-319-40409-7_4
https://doi.org/10.1007/978-3-319-40409-7_4
https://doi.org/10.1007/978-3-319-01303-9_15
https://doi.org/10.1007/978-3-319-01303-9_15
https://doi.org/10.1007/978-3-642-39229-0_1
https://doi.org/10.1007/978-3-319-40409-7_6
https://doi.org/10.1007/978-3-319-60492-3_61
https://doi.org/10.1007/978-3-319-60492-3_61

86

28.

29.

30.

31.

32.

33.

34.

M. Prestes et al.

Carell, A., Lauenroth, K., Platz, D.: Using design thinking for requirements engi-
neering in the context of digitalization and digital transformation: a motivation and
an experience report. The Essence of Software Engineering, pp. 107-120. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73897-0_7

Newman, P., Ferrario, M.A., Simm, W., Forshaw, S., Friday, A., Whittle, J.: The
role of design thinking and physical prototyping in social software engineering. In:
Proceedings of the IEEE International Conference on Software Engineering, vol.
2, pp. 487-496. IEEE/ACM (2015)

Berger, A.: Design thinking for search user interface design. In: Proceedings of the
European Workshop on Human-Computer Interaction and Information Retrieval,
pp. 1-4 (2011)

Sandino, D., Matey, L.M., Vélez, G.: Design thinking methodology for the design
of interactive real-time applications. In: Marcus, A. (ed.) DUXU 2013. LNCS,
vol. 8012, pp. 583-592. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39229-0_62

El-Sharkawy, S., Schmid, K.: A Heuristic approach for supporting product innova-
tion in requirements engineering: a controlled experiment. In: Berry, D., Franch,
X. (eds.) REFSQ 2011. LNCS, vol. 6606, pp. 78-93. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19858-8_10

de Paula, D.F.O., Araijo, C.C.: Pet empires: combining design thinking, lean
startup and agile to learn from failure and develop a successful game in an under-
graduate environment. In: Stephanidis, C. (ed.) HCI 2016. CCIS, vol. 617, pp.
30-34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40548-3_5
Lucena, P., Braz, A., Chicoria, A., Tizzei, L.: IBM design thinking software devel-
opment framework. In: Silva da Silva, T., Estéacio, B., Kroll, J., Mantovani Fontana,
R. (eds.) WBMA 2016. CCIS, vol. 680, pp. 98-109. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55907-0-9

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1007/978-3-319-73897-0_7
https://doi.org/10.1007/978-3-642-39229-0_62
https://doi.org/10.1007/978-3-642-39229-0_62
https://doi.org/10.1007/978-3-642-19858-8_10
https://doi.org/10.1007/978-3-319-40548-3_5
https://doi.org/10.1007/978-3-319-55907-0_9
https://doi.org/10.1007/978-3-319-55907-0_9
http://creativecommons.org/licenses/by/4.0/

Characterising the Quality of Behaviour
Driven Development Specifications

Leonard Peter Binamungu®™, Suzanne M. Embury,
and Nikolaos Konstantinou

Department of Computer Science, The University of Manchester,
Oxford Road, Manchester M13 9PL, UK
{leonardpeter.binamungu,suzanne.m.embury,
nikolaos.konstantinou}@manchester.ac.uk

Abstract. Behaviour Driven Development (BDD) is an agile testing
technique that enables software requirements to be specified as example
interactions with the system, using structured natural language. While
(in theory) being readable by non-technical stakeholders, the examples
can also be executed against the code base to identify behaviours that
are not yet correctly implemented. Writing good BDD suites, however, is
challenging. A typical suite can contain hundreds of individual scenarios,
that must correctly specify the system as a whole as well as individually.
Despite much discussion amongst practitioners and in the blogosphere, as
yet no formal definition of what makes for a high quality BDD suite has
been given. To shed light on this, we surveyed BDD practitioners, asking
for their opinions on the quality criteria that are important for BDD
suites. We proposed, and asked for opinions on, four quality principles,
and gave practitioners the option to add more principles of their own.
This paper reports on the results of the survey, and presents an approach
to defining BDD suite quality.

Keywords: Behaviour driven development - Test suite quality - Test
suite quality assessment

Introduction

Listing 1. Sample scenario from an ATM feature

Given my account is in credit by $100
When I request withdrawal of $20
Then $20 is dispensed

And my balance is $80

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 87-102, 2020.
https://doi.org/10.1007/978-3-030-49392-9_6

®

Check for
updates

Behaviour Driven Development (BDD) [14] enables software requirements to
be given as a collection of examples (usually referred to as scenarios) that use
structured natural language to describe how users will interact with the System
Under Test (SUT). A typical BDD suite can contain hundreds of individual
scenarios [1], organised as several feature files. Listing 1 shows a sample scenario
from a feature that specifies customer interactions with an ATM.


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_6

88 L. P. Binamungu et al.

Despite their natural language form, BDD scenarios can be linked to the SUT
through glue code, allowing them to be executed. This turns the specification
into a living document, in which failing scenarios indicate features that are not
yet fully or correctly implemented. The following is an example of Java glue code
for the second step in the scenario in Listing 1:

OWhen("I request withdrawal of \$(\d+)$")
public void request_withdrawal_of (double amt) {
account.withdraw(amt, teller);

}

The annotation for the method contains a regular expression that is matched
against each scenario step as it is executed. When a method is found with a
matching annotation, it is executed, with the values extracted from the capture
groups passed as the parameter values. Literature has reported both the benefits
of using BDD and the challenges that software teams face when using BDD (e.g.
[1,13)).

BDD approaches fit well with other agile practices for requirements gather-
ing and documentation, with BDD features mapping naturally to user stories
and the individual scenarios mapping (though more loosely) to the conditions
of satisfaction sometimes documented on user story cards as the confirmation
element of the story. The fact that BDD scenarios are expressed using customer
languages means that they can (in theory, at least) be read and understood by
non-technical project stakeholders, and compared with their knowledge of the
domain. BDD is thus typically characterised as a customer-facing form of testing,
that can be undertaken from the earliest stages of the project, once the first user
stories have been identified, and that delivers value right through development
and (in a regression testing role) the operational lifetime of the software.

Writing a high quality BDD suite is important. BDD suites can quickly grow
to include hundreds or even thousands of individual scenarios [1]. The suite
must specify the correct behaviour as a whole, as well as through the individual
scenarios. For the long term correctness and extensibility of the system, it is
important that the BDD suite be written to a high standard. BDD suite quality
has been heavily discussed amongst practitioners and in the blogosphere, and
is beginning to be considered by the software engineering research community
[15-17] but no formal notion of BDD suite quality has been given that can assess
individual scenarios and their relation to the rest of the suite.

In this paper, we present the results of a survey of BDD practitioners’ views
about BDD suite quality. To give structure and precision to the results, we
proposed four principles of BDD suite quality, and asked respondents to give their
level of agreement with them. We also asked respondents to describe additional
quality principles that they thought were important, and that weren’t covered
by the proposed principles. All the four principles received support, with at
least 75% of respondents voting in support of each one, though all of them also
received a number of dissenting votes. Respondents also stressed the importance
of writing scenarios in way that promotes reuse within BDD, but put most
emphasis on readability and clarity of the resulting specification.



Quality of BDD Specifications 89

This paper makes three contributions:

1. BDD Suite Quality Principles: We propose four principles describing
features expected of a high quality BDD specification.

2. Practitioner Support for the BDD Suite Quality Principles: We
report the results of a survey of practitioner support for the BDD suite quality
principles.

3. Other BDD Suite Quality Aspects: We report about other quality
aspects of BDD suites, from which further quality principles can be devel-
oped.

The rest of the paper is structured as follows: Sect. 2 surveys related work
on test suite quality; Sect.3 presents the approach we used to obtain quality
principles, and the quality principles themselves; Sect. 4 presents practitioners’
opinions about the proposed principles; and Sect.5 concludes the paper and
highlights future research directions.

2 Related Work

In this section, we first explore how quality is characterised in automated test
suites more generally, to see whether these notions of quality can inform the
definition of quality for BDD. After that, we review the literature on BDD
quality specifically.

Assessing the quality of tests and requirements: Tengeri et al. [21] devised
a method for test suite improvement based on test coverage proportions. To use
the method, an improvement goal is first set (e.g removing duplicate test cases,
improving coverage of some parts of code, etc.). Then a granularity of focus is
chosen—coarse (e.g. functional level) or fine (e.g. statement level). Various metrics
are then computed based on coverage data gathered during test execution, which
are then used to inform the process of updating tests and code.

Palomba et al. [18] found that test cohesion and test coupling are impor-
tant criteria for increasing the quality of automatically generated test cases, and
included these criteria in their algorithm for search-based test case generation.
Meszaros [12] defines test cohesion and coupling as follows. Test cohesion refers
to the simplicity of a test case—a highly cohesive test case should not be involved
in the verification of a lot of functionality. Test coupling, on the other hand,
measures the extent to which tests overlap with each other. To be easily main-
tainable, tests should have low cohesion and coupling. Improvement in quality
of automatically generated test cases was observed when the two criteria were
incorporated into an algorithm for automatic test case generation [7].

Daka et al. [5] used human judgement to develop a model for assessing the
readability of unit tests, and then applied this model to generate readable unit
tests. Crowdsourcing was used to rate the readability of tests on a five point
scale. After that, 24 structural, complexity, and code density unit test features
were selected and used to build the model. When compared with the crowd-
sourced readability results, the model was found to be in agreement by 89%.



90 L. P. Binamungu et al.

Moreover, using the model to augment automatic generation of unit tests, it
was found that more readable unit tests were generated, and the speed at which
humans could answer questions about maintenance increased by 14% without
losing accuracy.

There have been a small number of attempts to assess the quality of natural
language tests and requirements through the notion of smells. Examples are the
work of Hauptmann et al. [9] in which a set of smells in manual natural language
tests was proposed, along with ways to detect them, and the work of Femmer
et al. [6] in which nine smells in natural language requirements (and methods
for their detection) were proposed.

Assessing the quality of BDD suites: Cochran et al. proposed a tool to
detect smells in BDD suites [4]. Their work is similar to ours in a sense that
it is also about the quality of BDD feature suites. However, the tool does not
provide a mechanism to assess the quality of a scenario with respect to all other
scenarios in a feature suite.

To the best of our knowledge, the work of Oliveira et al. [15-17] is the
only published work that focuses on quality in BDD specifications. Specifically,
Oliveira et al. suggested that a good BDD scenario should be essential, focused,
singular, clear, complete, unique, ubiquitous, and integrous [15-17]. However,
these attributes define, in general terms, the characteristics expected of a good
scenario, but are not precise enough to facilitate the assessment of the quality
of one scenario in relation to all other scenarios in a suite.

3 BDD Suite Quality Principles

In this section, we first present the process used to produce the principles, and
then we describe the four principles in their general form.

3.1 Aspects of Quality in BDD Specifications

To understand what constitutes good quality in BDD suites, we first searched
the scientific literature for attempts to define quality in BDD specifications. This
gave us only the work of Oliveira et al. which suggested that good BDD scenar-
ios should be essential, focused, singular, clear, complete, unique, ubiquitous, and
integrous [15-17]. However, these attributes define, in more general terms, the
characteristics expected of a good scenario, but are not precise enough to facili-
tate the assessment of the quality of one scenario in relation to all other scenarios
in a suite. Thus, BDD quality facets in the literature have focused on quality
at the scenario level, when the present work is interested in quality at the suite
level.

To obtain attributes that are suitable for assessing the quality of a scenario
relative to all other scenarios across a feature suite, we borrowed ideas from the
quality attributes in the work of Oliveira et al. [17] and complemented these ideas
with other practitioners’ opinions on quality in BDD feature suites. To obtain
practitioners’ opinions on quality in BDD feature suites, we analysed articles



Quality of BDD Specifications 91

from the BDD Addict Newsletter [20], a monthly online newsletter about BDD,
which publishes articles about various aspects of BDD from the perspective of
BDD practitioners. Articles from 32 issues of the newsletter (from February 2016,
when the first issue was released, to December 2018) were analysed for quality
facets in BDD suites. We then searched StackOverflow' and StackExchange? for
any additional BDD quality facets that might not have been covered in the BDD
Addict Newsletter.

Table 1 summarises the quality facets we obtained from both scientific and
grey literature. Some of these quality facets focus on the step level, others focus
on the scenario level, and still others focus on the suite level.

Table 1. BDD quality aspects from scientific and grey literature

S/n Quality Aspect

1 | A good quality scenario should be concise, testable, understandable,
unambiguous, complete, and valuable

2 | Reuse of steps across scenarios can improve suite quality

3 | Declarative (high level) steps are preferred to imperative (low level) steps

4 | Business terminology should be consistently used across the specification

5 | Scenarios should focus on the benefit they offer to users, if implemented

6 | Scenarios should use the terminology understood by all project stakeholders

7 | Each scenario should test one thing

8 | Scenario titles should be clear

9 | Scenario descriptions should be focused

10 | Personal pronoun “I” should be avoided in steps

11 | Too obvious and obsolete scenarios should be avoided in the suite

12 | Scenario outlines should be used sparingly

13 | Scenarios should clearly separate Given, When and Then steps

14 | Use past tense for contexts (Given), present tense for events (When), and
“should” for outcomes (Then)

The review of both scientific and grey literature resulted in a useful set of
quality notions for general use, but none of them were sufficiently precise to allow,
for example, a tool to be created to find violations or propose improvements.
We selected 4 of these notions for further analysis, based on their potential to
be precisely defined, and created from them four hypothesised principles to be
tested against community opinion. These principles are presented in the next
four subsections.

! https://stackoverflow.com/.
2 https:/ /stackexchange.com/.


https://stackoverflow.com/
https://stackexchange.com/

92 L. P. Binamungu et al.

3.2 Principle of Conservation of Steps

A BDD scenario consists of a sequence of steps, as illustrated in the simple bank-
ing example in Listing 1. The Conservation of Steps principle seeks to maximise
the use of existing step phrases across the suite, and tries to avoid having too
many step phrases that are used only in one or two scenarios. To illustrate this
idea, suppose we need to write a scenario for when the bank customer tries to
withdraw more money than is in their account; this principle suggests we should
reuse the step phrases from the existing scenarios rather than inventing new
ways of phrasing the same idea (e.g. “my account is in credit by $10” rather
than “my account balance is $107).

This principle is based on the rationale that the steps in a BDD suite form a
vocabulary for talking about the functionality of the system. The Given and Then
steps describe different aspects of the system state, while the When steps describe
all the state-changing actions the completed system should be able to take. If
the same functionality can be expressed using a smaller number of steps, that
should reduce the comprehension effort needed to understand the whole suite,
as well as reducing the chance that duplicated or subtly inconsistent scenarios
will be added in future.

3.3 Principle of Conservation of Domain Vocabulary

Any organisational process that is supported by software will typically accrue
over its lifetime a set of terms or phrases describing the key ideas in the domain
of the process that are used by the people involved to communicate about and
advance the state of the work. The Ubiquitous Language agile practice requires
the software team to use the same terms wherever possible, in the artefacts that
describe and constitute the system [19]. This is also true within BDD suites.
For example, in the scenario in Listing 1, it would be desirable to use the term
“balance” whenever referring to the amount funds remaining in an account,
instead of inventing new phrases which might be synonymous to “balance”.

With this in mind, the Principle of Conservation of Domain Vocabulary seeks
to maximise the value of each domain term or phrase that is used in the BDD
suite. Inevitably, in any human endeavour, duplicate terms may be used for the
same concept. But each additional term increases the cognitive load for readers
and writers of scenarios. We therefore consider a suite to be of high quality if it
can express the required semantics clearly with the minimum number of domain
terms and phrases.

3.4 Principle of Elimination of Technical Vocabulary

Since BDD scenarios in a suite are meant to be readable by all project stakehold-
ers (including end users), the use of technical terms that, in most cases, only the
development team can understand, is discouraged. For instance, in the “When”
step of the scenario in Listing 1, use of the phrase “I click the button for with-
drawing $20” would reduce the chances of comprehension by some end users, as



Quality of BDD Specifications 93

well as imposing design choices onto the specification that may be non-optimal
in the implemented system. As such, scenarios that use domain terms are gen-
erally preferred to scenarios that use technical terms. This principle, therefore,
focuses on minimising the use of technical terms in the steps of BDD scenarios
across the suite.

3.5 Principle of Conservation of Proper Abstraction

One challenging aspect in the creation of a BDD feature suite is to select an
appropriate level of abstraction for the scenarios, and in particular for the steps.
Higher level steps convey more semantics, so that scenarios can be expressed
using fewer steps, and are often closer to the domain concepts that end users
are familiar with. But they require more extensive glue code to be written,
with more embedded assumptions, so that sometimes the meaning of the suite
cannot be understood with precision without reference to the glue code. Lower
level steps describe more fine-grained aspects of system state and state change.
Scenarios using them will typically be longer, requiring more steps to express
the same semantics than when using higher level steps. But lower level steps
require smaller simpler glue code to implement them. Feature suites written
using very low level steps can be too procedural, resembling traditional testing
scripts, rather than end-user focused declarative examples.

In Listing 2 which shows a scenario that belongs to the same feature as that
in Listing 1, the “Given” condition (which could be expressed as “my account
is in credit by $10”) is broken into two lower level steps on lines 2 and 3. This
introduces some inconsistency in the abstraction levels of steps in the two sce-
narios (the one in Listing 1 and the one in Listing 2), though both scenarios
belong to the same feature. Such inconsistency could also manifest in scenarios
across different features of the same BDD suite.

Listing 2. Scenario for unsuccessful withdrawal due to insufficient funds in the account

1 Scenario: Debit account unsuccessful

Given I have an account with the bank

And my balance is $10

When I request withdrawal of $100

Then nothing should be dispensed

And I should be told that I have insufficient funds

DU W N

Intuitively, therefore, a BDD feature suite in which scenarios are written at a
consistent level of abstraction will be easier to understand, extend and maintain.
On the contrary, if the feature suite has a mix of scenarios expressed at a low
level of abstraction and scenarios expressed at a higher level of abstraction, it
can be difficult for a maintenance engineer to decide on the level of abstraction
to use in expressing a new scenario. Moreover, there is likely to be duplication of
steps and glue code, and the test harness code will also be at inconsistent levels
of abstraction, adding to the comprehension and maintenance burden.



94 L. P. Binamungu et al.

4 Community Support for the BDD Quality Principles

We used a survey with 9 questions to gather practitioners’ opinions on the 4
principles. We wanted to discover whether the principles resonated with practi-
tioners as meaningful facets of BDD suite quality, and to discover whether there
were important quality facets we had overlooked.

4.1 Survey Design

The survey questions covered respondents’ demographics, views on the four prin-
ciples and opinions on quality aspects not covered by them. The questions on
demographics were:

Q1: Which of the following best describes your job?

Q2: What is the size of your organisation?

Q3: Which of the following best describes your experience of working with
BDD?

Q4: What country are you based in?

To mitigate the potential for bias and allow respondents to react in a natu-
ral way, the principles were not formally disclosed in the survey. Instead, we
sought respondents’ degree of agreement with informal statements of the prin-
ciples. Thus, the next four questions, Q5 through Q8, are respectively informal
statements for Conservation of Steps, Conservation of Domain Vocabulary, Elim-
ination of Technical Vocabulary, and Conservation of Proper Abstraction.

Q5: When adding new scenarios to a BDD suite, we should strive to reuse
existing steps wherever that is possible without compromising readability of
the scenario.

Q6: When writing the BDD scenarios for a particular domain, we should
strive to make use of a minimal set of domain terms in our scenario steps.
That is, we prefer to write steps that reuse domain terms already used in other
steps, rather than introducing new terms, wherever that is possible without
compromising readability of the scenario.

Q7: When adding new scenarios to a feature suite, we should prefer to use
steps that are expressed using domain terms over steps that are expressed
using more technical language, whenever we have a choice.

Q8: Within a feature suite, the abstraction levels of steps in one scenario
should be largely consistent with the abstraction levels of steps in other sce-
narios in the suite.

We then added a question for respondents to mention any other BDD suite
quality facets that might not have been captured by the four principles:

Q9: Please give us any other thoughts on how to keep scenarios and steps of
a BDD specification readable, easy to extend, and maintainable.



Quality of BDD Specifications 95

Questions 1 to 3 presented respondents with options to choose from, while ques-
tion 4 was free text. Questions 5-8 asked respondents to indicate their degree of
agreement, on a Likert scale, with each of the given statements. An “other” free
text option allowed respondents to provide alternative responses or to qualify
their degree of agreement. Question 8 was supplemented by 2 example scenarios,
clarifying the meaning of “abstraction level”. Question 9 allowed free text for
respondents to freely describe additional quality aspects.

The survey was pretested on a BDD practitioner. It was deployed using
SelectSurvey. NET on our university’s servers, and ran for one month from
December 2018.

4.2 Respondents and Their Demographics

We distributed the survey through a convenience sample using online discus-
sion groups and personal emails. Although this approach to sampling limits the
ability to generalise from the findings, convenience sampling is the recommended
pragmatic alternative when probabilistic sampling is not possible [8]. The survey
was posted to several Google Groups® and through an e-mail list of 5004 con-
tributors to BDD projects in GitHub?, supplemented by our personal industry
contacts. Since we requested respondents to share the survey with other inter-
ested parties, some respondents might have been recruited through snowballing.
Kochhar et al. [10] and Cito et al. [3] used similar methods to recruit survey
respondents.

The survey was viewed by 129 people, of whom 56 submitted responses to
the questions on BDD suite quality. Hereafter, all discussions of survey results
refer to this subset of 56 respondents. We randomly assigned numbers to each
respondent and refer to them as R1 to R56. The number of responses to questions
on the four principles were: Conservation of Steps (55), Conservation of Domain
Vocabulary (54), Elimination of Technical Vocabulary (55), and Conservation
of Proper Abstraction (56). Question 9, which asked about quality aspects not
covered by the principles, received 31 responses.

The distribution of respondent roles was: Developer (60.7%), Tester (12.5%),
Consultant (7.1%), Chief Technology Officer (CTO) (5.4%), Researcher (3.6%),
Business Analyst (1.8%), Other (7.1%), and did not say (1.8%). The sizes
of respondent organisations were: 1-20 employees (26.8%), 21-99 employees
(16.1%), 100-1000 employees (26.8%), more than 1000 employees (21.4%), all
sizes (7.1%), did not mention (1.8%). Respondents’ experience of working with
BDD were: <1 year (7.1%), 1-5 years (28.6%), 6-10 years (51.8%), and >10
years (12.5%). Finally, the geographical distribution of respondents were: Europe
(64.3%), North America (21.4%), Asia (5.4%), Zealandia (7.1%), and did not say
(1.8%).

3 Cucumber, Behaviour Driven Development, Specflow, Concordion, and Serenity
BDD.
4 The list was harvested through a process described elsewhere [1].



96 L. P. Binamungu et al.

4.3 Survey Data Analysis

We first plotted the respondents’ levels of agreement for each principle, and
summarised other respondents’ comments on each principle. Then, we used the
thematic analysis guidelines by Braun and Clarke [2] to analyse the free text
responses on other ways to keep BDD suites comprehensible, extensible and
maintainable. In particular, we conducted theoretical thematic analysis [11], in
which data analysis is guided by the research question; in our case, the ques-
tion of interest was how to keep BDD specifications readable, extensible and
maintainable.

100.0%
90.0%
80.0%
70.0%
60.0% m Strongly Disagree
m Disagree
50.0%
m Neutral
40.0%
m Agree
30-0% m Strongly Agree
20.0%
10.0%
0.0% T T T
Conservation of Conservation of Elimination of Conservation of
Steps Domain Vocabulary Technical Proper Abstraction
Vocabulary

Fig. 1. Acceptability of each BDD quality principle by respondents

Data coding began after an initial pass through the responses. We coded
everything in the text that related to readability, extensibility and comprehen-
sibility of BDD specifications. We used open coding—we had no predetermined
codes. After coding, we grouped related codes together to form the list of initial
themes which we iteratively refined to produce the final list. Finally, we cate-
gorised the themes as actionable points either for all project stakeholders or for
developers/QAs.

4.4 Survey Results

Figure 1 shows the respondents’ degree of agreement with each principle. Each
principle was accepted (strongly agree/agree) by at least 75% of the respondents
who answered the question and clearly indicated their degree of agreement.
Other comments on the principles were as follows.

— Conservation of Steps: steps should also be expressed in general terms;
sometimes it can be a good idea to focus on writing clear steps that serve



Quality of BDD Specifications 97

the purpose, and then fix the design later; the main focus should be on the
readability, and reuse of steps can affect the readability and maintainability
of the specification.

— Conservation of Domain Vocabulary: it should be possible to use new
domain terms whenever necessary, provided that the specification remains
readable to customers.

— Elimination of Technical Vocabulary: implementation words can some-
times be used, depending on the product owner and expected readers of the
specification; sometimes, it can be challenging to translate domain words used
in scenarios into implementation details.

— Conservation of Proper Abstraction: the abstraction levels should be
determined by capturing correct requirements, and producing scenarios that
are readable to customers; lower abstraction levels can be appropriate if sce-
narios carry data; sometimes, one can use different abstraction levels for
Given, When, and Then steps.

Responses to question 9, requesting other opinions on facets of BDD quality,
are summarised in Table 2 and Table 3.

4.5 Discussion and Threats to Validity

In general, the majority of the respondents supported the principles as acceptable
descriptors of facets of BDD suite quality (see “Strongly Agree” and “Agree”
responses in Fig.1). The written comments stressed the importance of reuse
within BDD, but put most emphasis on readability and clarity of the resulting
specifications. For all the principles, the respondents who stated the reasons for
dissenting mainly emphasised that decisions on reuse or use of steps, domain
terms, implementation terms and abstraction levels should be determined by
the specific contexts.

Moreover, even the other quality facets mentioned by the respondents
(Table 2 and Table 3) resonate well with the quality principles we have proposed.
For example, themes 3 and 5 in Table2 respectively resonate with the Princi-
ple of Conservation of Domain Vocabulary and the Principle of Elimination of
Technical Vocabulary; at the same time, theme 4 in Table 3 proposes keeping an
inventory of all steps in a suite, which would be a facilitative environment for
the implementation of the Principle of Conservation of Steps.

The threats to the validity of our results are the following:

— We mainly depended on practitioners with online presence, either through
GitHub or other online forums where BDD and other agile topics are dis-
cussed. Thus, we might have missed some in-house practitioners that are not
easily reachable through any of those means. To mitigate the effects of this, we
requested those who completed or saw the survey to refer it to others. Also,
we sent survey completion requests to some practitioners who were known in
person to the authors, and requested them to share the survey to others.



98

L. P. Binamungu et al.

Table 2. Other recommended practices for all project stakeholders on how to keep
BDD specifications readable, easy to extend, and maintainable

S/n

Theme

Frequency

Sample Excerpts

1

Specification should act as readable
business documentation

11

- “The key is to have a multi-layered
approach; the gherkin scenarios should
focus on being readable as business
documentation...” (R8, Consultant)

Clear description of business goals using
examples

- “Describe the business goal and the
steps on how to achieve them as clearly
as you understand at the moment.” (R4,
Developer)

- “Focus on clean specifications that are
consistent within the bounded context”
(R6, IT Consultant)

Use of common domain concepts and
terms across the specification

- “..I like the idea of a glossary of terms
from the Writing Great Specifications
book...” (R6, IT Consultant)

-“Use the same domain language and
terminology as the rest of your organi-
sation/customers/industry” (R26, Chief
Technology Officer)

- “..Have a glossary with important
domain concepts, primary term and
possible synonyms.” (R44, Principal
Software Architect)

Focus on capturing comprehensive
requirements for all project stakeholders

- “BDD specification should satisfy both
business analyst and developer as much
as possible.” (R11, Developer)

- “Bverything around BDD and
Specification by example is around
creating a shared understanding. That
is the core reason to do examples in the
first place; the help us uncover hidden
assumptions...” (R18, BDD Coach)

Specification should be easy to
understand based on general domain
knowledge

- “Test them on other people not involved
in the project. Can they understand what
they mean? Can they determine the
intent of each scenario?... ” (R2, Con-
sultant)

- “Where possible, involve less technical
stakeholders and team members in the
process of scenario development...”
(R46, Developer)

Share specs with stakeholders for
reference and correction, and perform
regular maintenance of specs

-“I believe the key would be to period-
ically revisit them and keep updated, if
necessary rewrite or reword older ones. I
find it very useful to also publish scenar-
108 using ci tools somewhere so business
people can read specs and spot inconsis-
tencies” (R47, Developer)

- “At the very least, have the specs avail-
able for reference by the project stake-
holders.” (R46, Developer)

- “..Refactoring also applies to BDD
scenarios...” (R44, Principal Software
Architect)




Quality of BDD Specifications

Table 3. Other recommended practices for QAs and developers on how to keep BDD
specifications readable, easy to extend, and maintainable

S/n

Theme

Frequency

Sample Excerpts

1

Write reusable and yet focused
steps and step definitions

11

- “..the gherkin scenarios should focus
on being readable as business documen-
tation, and map to reusable steps in the
step definitions. It is the DSL code in the
step definitions where the real reusability
benefits occur” (R8, Consultant)

- “It’s best to re-use steps either by
referring to them directly (Using Given,
Andm), or creating a new step
definition using the underlying API,
not calling one step definition from
another” (R24, Software Engineer in
Test)

Aim for more stateless scenarios

- “The scenarios should be stateless, in
the sense that they should store as few
data as possible.” (R50, Developer)

Proper use and order of Given,
When, and Then steps; and
careful choice and use of
framework-specific BDD features

- “Ensure that WHEN’s only perform
actions and THEM'’s only assert ( do
not modify the SUT state ) and are
expressed as such” (R43, Tester)

- “..Choose good titles
(scenario/feature) 9) Don’t send test
data from feature file, (but examples of
behavior are allowed)10) Less is More
11) Limit one feature per feature file.
This makes it easy to find features. 12)
Hide data in the automation 13) Steps
order must be given/when/then - not
other order‘” (R25, Test Architect)

Miscellaneous: Keeping an
inventory of all steps in a project;
clear separation of
customer-readable tests from glue
code and the underlying API; and
leveraging the full capabilities of
underlying BDD framework and
regular expressions

-“I’'m not aware if this is already pos-
sible but it would be helpful to produce
a dictionary of all the steps used in a
project by extracting them from the fea-
ture suites.” (R1, Developer)

- “The key is to have a multi-layered app-
roach; the gherkin scenarios should focus
on being readable as business documen-
tation, and map to reusable steps in the
step definitions. It is the DSL code in the
step definitions where the real reusability
benefits occur” (R8, Consultant)

- “Make full use of the underlying BDD
framework / regular expressions and
craft the step definitions like a powerful
text-based API.” (R33, Developer)

99

— The four quality principles we propose were partly influenced by our choices
of what to focus on in order to come up with an initial set of BDD suite
quality principles for testing against community opinion (Sect.3.1). To miti-
gate the effects of this, our choices of quality aspects to focus on were mainly
informed by the quality facets from the state-of-the-art and the state-of-



100 L. P. Binamungu et al.

practice (Sect.3.1). Moreover, all the principles were supported by majority
of survey respondents from the BDD practitioner community (Fig. 1).

— Most of the respondents might have been using a particular BDD tool, so
that our results could be valid for users of a specific BDD tool only. To cover
practitioners using a variety of BDD tools, we followed the objective criteria
mentioned in Sect. 4.2 to identify email addresses to which survey completion
requests were sent. We also posted the survey in a general BDD forum, in
anticipation that respondents from that forum might be using different tools.

— The use of convenience sampling (in our case, depending on self-selecting
respondents within the groups we contacted) might limit the ability to gen-
eralise from the survey findings. To mitigate the effects of this, we survey 56
respondents from 5 continents across the world (Sect. 4.2), and some of the
respondents were contributors to sizeable BDD projects in GitHub (Sect. 4.2).
Still, our results may not generalise to all BDD practitioners across the world.
For example, our results do not represent BDD practitioners who are not pro-
ficient in English.

5 Conclusions

BDD is currently used by industry teams to specify software requirements in a
customer understandable language [1]. This produces a collection of examples
that act as executable tests for checking the behaviour of the SUT against the
specifications. However, large volumes of BDD suites can be hard to understand,
maintain and extend. Duplication, for example, can be introduced by members
joining the teams at different points in time.

We have proposed four principles for assessing the quality of BDD suites.
Each principle was supported by at least 75% of the practitioners we surveyed.
Practitioners also emphasised the importance of reuse within BDD, but stressed
more on readability and clarity of the resulting specifications.

In the future, we will investigate the operationalisation of these principles,
so that they can be used to assess the quality of BDD suites. Moreover, we
will investigate the possibility of developing and evaluating more principles from
other issues reported by practitioners (Table 1, Table 2, and Table 3). For exam-
ple, we need a principle on “readability” of scenarios in a suite, a property that
was rated highly by the survey respondents, and that probably trumps all over
other quality principles. Respondents would prefer to keep the scenario that
breaks our rules if it is the more readable one. This suggests a future work
idea, looking for general metrics of text readability, to see if they can be applied
to BDD suites. As well, we will investigate novel ways to help practitioners to
manage steps, terms and abstraction levels of specifications. It might also be
worthwhile investigating how the quality of BDD feature suites is related to the
overall system quality, to inform software quality planning in organisations.



Quality of BDD Specifications 101

References

10.

11.

12.

13.

14.

15.

16.

17.

Binamungu, L.P., Embury, S.M., Konstantinou, N.: Maintaining behaviour driven
development specifications: challenges and opportunities. In: 2018 IEEE 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 175-184. IEEE (2018)

Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Res.
Psychol. 3(2), 77-101 (2006)

Cito, J., Leitner, P., Fritz, T., Gall, H.C.: The making of cloud applications: an
empirical study on software development for the cloud. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pp. 393-403. ACM
(2015)

Cochran, R., Vaughn, C., Anderson, R., Patterson, J.: cuke_sniffer. https://github.
com/r-cochran/cuke_sniffer (2012)

Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pp. 107-118. ACM (2015)

Femmer, H., Fernandez, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190-213 (2017)

Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276-291 (2012)

Fricker, R.D.: Sampling Methods for Online Surveys. The SAGE Handbook of
Online Research Methods (2016)

Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R., Braun, P.: Hunting
for smells in natural language tests. In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 1217-1220. IEEE Press (2013)

Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated
fault localization. In: Proceedings of the 25th International Symposium on Software
Testing and Analysis, pp. 165-176. ACM (2016)

Maguire, M., Delahunt, B.: Doing a thematic analysis: a practical, step-by-step
guide for learning and teaching scholars. AISHE-J All Ireland J. Teach. Learn.
Higher Educ. 9(3) (2017)

Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Pearson Education,
London (2007)

Mishra, A.: Introduction to behavior-driven development. iOS Code Testing, pp.
317-327. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2689-
6-10

North, D.: Introducing BDD. Better Software Magazine (2006)

Oliveira, G., Marczak, S.: On the empirical evaluation of BDD scenarios qual-
ity: preliminary findings of an empirical study. In: 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW), pp. 299-302. IEEE
(2017)

Oliveira, G., Marczak, S.: On the understanding of BDD scenarios quality: pre-
liminary practitioners opinions. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.)
Requirements Engineering: Foundation for Software Quality, vol. 10753, pp. 290—
296. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1_18
Oliveira, G., Marczak, S., Moralles, C.: How to evaluate BDD scenarios’ quality?
In: Proceedings of the XXXIII Brazilian Symposium on Software Engineering, pp.
481-490. ACM (2019)


https://github.com/r-cochran/cuke_sniffer
https://github.com/r-cochran/cuke_sniffer
https://doi.org/10.1007/978-1-4842-2689-6_10
https://doi.org/10.1007/978-1-4842-2689-6_10
https://doi.org/10.1007/978-3-319-77243-1_18

102 L. P. Binamungu et al.

18. Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A.: Automatic
test case generation: what if test code quality matters? In: Proceedings of the 25th
International Symposium on Software Testing and Analysis, pp. 130-141. ACM
(2016)

19. Shore, J., et al.: The Art of Agile Development: Pragmatic Guide to Agile Software
Development. O’Reilly Media Inc., Newton (2007)

20. Specsolutions. BDD addict newsletter (2020). Accessed 2 Feb 2020

21. Tengeri, D., Beszédes, A., Gergely, T., Vidacs, L., Havas, D., Gyim6thy, T.: Beyond
code coverage—an approach for test suite assessment and improvement. In: 2015
IEEE Eighth International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), pp. 1-7. IEEE (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

“I Don’t Understand!”: Toward a Model
to Evaluate the Role of User Story Quality

Daniel Hallmann®-2(=)
! University of Bamberg, Bamberg, Germany
daniel.hallmann@uni-bamberg.de
2 University of Applied Sciences Dresden, Dresden, Germany

Abstract. User stories are popular for conveying requirements in agile
software projects. Despite existing quality criteria, authors make formal
mistakes that result in “bad” user story quality. If developers have insuf-
ficient experience in balancing quality problems, the creation of a shared
mental model is impossible, thus increasing the risk of impacts on the
project’s success. This article provides a work-in-progress research model
to set these variables in relation and establish a systematic method to
uncover answers regarding their correlation. Details on the effects sup-
port research in agile requirements engineering to gain a better under-
standing of cognitive processes in the comprehension of user stories. In
addition, insights can help to develop design recommendations and Al
tools to improve user stories. A first evaluation of the model provides
promising insights into the behavior and forms a basis for future research.

Keywords: Agile software development - User story quality -
Developer experience - Shared mental model - Project success

1 Introduction

In agile software projects, user stories are widely used to communicate require-
ments between authors such as a product owner—a business role in Scrum
[4]—and developers. The short text documents specify a requirement in the
form [title]—As [persona], I want [what] because [why]—[acceptance criterial]—
[attachments] [4]. CCC (Card, Conversation, Confirmation) [10], INVEST (Inde-
pendent, Negotiable, Valuable, Estimable, Small, Testable) [18] and Cohn’s
Guidelines [4] are quality criteria, but mistakes from authors pervade, which
can result in “bad” user stories. These might be incorrect or missing form fields
(e.g., [acceptance criteria]) [4]. Additionally, developers with different experience
levels work together on projects according to their career and time in a team [2].

Developers attempt to build a mental model [5] of the implementation steps
and necessary effort based on problems in user stories during an estimation
session, such as planning poker [18]. Without sufficient knowledge to balance
inadequate information, it is not surprising that developers become frustrated
and respond with “I don’t understand!”. These individual problems can prevent

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 103-112, 2020.
https://doi.org/10.1007/978-3-030-49392-9_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_7&domain=pdf
http://orcid.org/0000-0003-3324-5808
https://doi.org/10.1007/978-3-030-49392-9_7

104 D. Hallmann

the forming of a shared mental model [5] between the author and developers and
increase the risk of impacts on project success, such as lengthy discussions or
unnecessary work [2].

Empirical work provides analyses of user stories in estimation sessions to iden-
tify important factors for reasonable estimates of story sizes [9,12]. Accordingly,
groups generate better results than do single individuals, and sufficient experi-
ence is essential for estimating coarse-grained user stories. Within the empirical
studies, the focus is on optimizing the estimates made by experts. However, the
existing research lacks a cognitive psychological perspective on understanding
the content—especially in the case of issues in user story quality—as a further
factor for obtaining proper estimates. For example, it is currently unclear how
variances in user story quality with varying levels of developer experience affect
the understanding or shared mental model [5] between the author and developers.
If there is no shared view, the question of the impact on project success arises,
a research gap we address in this paper. As a starting point for our research, we
therefore ask the following research question:

RQ: What is the relationship between user story quality, developer experience,
shared mental model between the author and developers, and project success?

If we know details of the relationship, we can make statements regarding the
effect of user story quality—and their “bad” and “good” variations—on human
and project factors. We can close the gaps in agile requirements engineering
research, especially in the introduction of user story comprehension as a level
for evaluating the correctness of estimates. Subsequently, if we know the “bad”
aspects, we can then create “good” aspects in design recommendations, thus
helping authors in practice when they write user stories. In addition, it is con-
ceivable to provide an intelligent AT tool support for the creation of user stories.

In this paper, we present a model to systematically create and evaluate
the relationship. The structure of the model is based on the cognitive psy-
chological perspective, which allows for the definition of latent constructs and
their theoretical relationship. In addition, the paper presents our multi-method
approach, which addresses the empirical data collection and evaluation of the
model. The latent constructs are not directly measurable, so the methodological
section includes a presentation of the measurable indicators. The initial evalua-
tion results of the model subarea for user story quality appear promising. The
structure of indicators can represent the structure in our data set, which allows
for first steps in determining the correlation to the other constructs. However,
the instrument is not currently error free, and the measurements can be inac-
curate. The first analysis suggests that the low data size and differences in the
indicator variances may cause the weakness. In the subsequent steps of the eval-
uation, we analyze the causes in greater detail to correct the inaccuracies. For
this purpose, we will extend the test with additional user stories from other
completed projects.

We subsequently present our model in Sect. 2, which describes the constructs
and a priori assumptions of the relationship. Then, Sect. 3 provides details of the



The Role of User Story Quality 105

methods and indicators with which we organize our collection and analysis of the
empirical data. Finally, in Sect. 4 we present our initial results of the preliminary
evaluation, conclusions, and upcoming steps.

2 Research Model

We selected structural equation modeling [3] as the first approach to answer the
research question and systematically determine the strength of the correlations
between the research objects. This method is a well-known and widely used in
psychology [3], social sciences [11], and information systems [19].

First, we extracted the four latent constructs user story quality, developer
experience, shared mental model, and project success from the research ques-
tion and built connections with hypotheses to form the basic structure. Each
construct was then operationalized via four indicators to enable empirical data
collection and evaluation. Figure 1 describes our model with constructs, hypothe-
ses, and indicators. The following section presents details for the constructs and
hypotheses. Details to the indicators are shown in the method Sect. 3.

User Story
Quality
- Formal Quality
- Lexical Quality Project
_Saturation Quaity Shared Mental Success
Y Model - People Success
- Model Basis - Developer
- Model Similarity - Customer
Developer Model Saturat evimaton
Experience < Mode! Saturation

H2 (+) - Development

- Language/Tool Experience
- Platform Experience

- Application Experience
- Teamwork Experience

Fig. 1. Research model

User Story Quality. The quality aspect of a user story is a central construct
given its essential role in the problem statement. It represents the goodness and
badness of the content and structure, with a focus on pure text features. Sen-
tences, words, and syllables provide the basis for formal and semantical dimen-
sions of quality. The number of filled-in form fields and business domain keywords
can help to determine the degree of quality. Our approach reflects the existing
quality criteria from CCC, INVEST, and Cohn’s Guidelines, especially regarding
value generation and testability.

Shared Mental Model. This construct describes the knowledge structures of
the team members regarding the actual experiences and abilities of the team
[5]. This knowledge creates the prerequisite for the coordinated joint processing



106 D. Hallmann

of a task in a particular situation. Agile methodology focuses on individuals,
interactions, and collaboration [1] in addition to a joint understanding of user
stories in teams [4]. This orientation on humans and coordinated teamwork helps
in accomplishing goals quickly.

A user story should be negotiable [18] to support conversation [10] and
make estimation possible [18]. The format and quality criteria of the user story
addresses text and in-person interaction. It should support information extrac-
tion and communication to form an individual and then team approach [4].
Therefore, a “good” user story with high readability and updates can support
individual comprehension and a discussion promoting a shared mental model.
Thus, we posit the following;:

H1: The more that user story quality increases, the more shared is the mental
model of the team members.

Developer Experience. Project insights are significant for development [2],
especially in agile projects, with a focus on individuals [1]. Developers should
understand technical (e.g., programming languages, tools), business domain
(e.g., applications, requirements), and team (e.g., skills, attitudes) properties
to make the proper decisions during implementation. Details of existing appli-
cation components (e.g., sign in, security) are mandatory to determine which
must be involved in implementation ideas. If the existing source code cannot be
reused, everyone should be aware of technologies to generate a new approach.
Studies of shared mental models [5] reveal that personal properties, such as
experience, impact the creation of a proper shared understanding in the team. In
addition, results in software teams [2] identify the importance of prior familiarity
with application components to obtain a stronger shared team and task mental
model. Simultaneously, agile approaches mention the importance of having suffi-
cient technical and domain knowledge in estimation sessions to arrive at a group
agreement on a user story estimate [15]. We therefore propose the following:

H2: The more that developer experience increases, the more shared is the mental
model of the team members.

Project Success. The portion of the model that concerns project success covers
economic aspects, with a focus on time and money [2]. It addresses the enhance-
ments of projects in the light of people and process aspects. Therefore, developer
experiences and requirements can positively influence the economic factors of a
project. Triggers include sufficient developer experience and the fulfillment of
requirements, such as user stories. All these aspects could save resources and
must be supported.

Achieving a rapid understanding of a user story between all developers and a
shared mental model with the author can support the motivation of developers
and quick discussions in an estimation session. In addition, a shared under-
standing can increase appropriate implementation results later in a feature pre-
sentation and the satisfaction of an author and customer. The accepted feature
without additional time for bug fixing also enables the direct development of



The Role of User Story Quality 107

additional software functions, which can have a positive effect on the perfor-
mance and project schedule. Therefore, we posit the following:

H3: The more shared the mental model of the team members, the more supported
18 the project success.

3 Method

The methodological process to test the hypothesis and answer the research ques-
tion begins with an ex-post analysis based on data from completed projects. It is
common practice to conduct a preliminary study to gather initial findings, thus
allowing for early model optimization [3]. Through exploratory factor analysis
[3], we verify the consistency of indicators from subareas of the model. We began
with existing user stories to evaluate the specification of user story quality, and
our initial results are presented in Sect.4. In addition, further improvements
of indicators and an evaluation of the hypotheses are planned in two consecu-
tive steps. First, we will perform a field study to gather new data from ongoing
projects; this step is essential to address the data collection for all indicators,
which allows for testing the entire model and our hypothesis. Afterward, we
conduct an experiment based on small student teams to obtain data in a con-
trolled situation. The focus here is on the evaluation of corner cases to stress
the model and consolidate the parameters and predictions. User story quality
is measured via document analysis and shared mental model and project suc-
cess through observing estimation sessions. Project success is captured through
document analysis and observation during the development phase and customer
review. Obtaining data for developer experience is planned as a two-step process.
Developers first rank their experience in a team meeting, and we then measure
experience by observing estimation sessions.

The indicators for measuring the constructs are created based on conference
feedback [7], a literature review [8], two expert interview studies, and research
group meetings. The focus during creation was on proper content saturation,
test quality criteria, linear behavior, and the reuse of project indicators [3]. In
addition, a simple structure and fast value collection are aspects of indicator
design. The scale of all indicators is positive with low (—) and high (4) values
that define the low and high representation of the constructs. Details of each
indicator and their specific scale and range are provided in the following section.

User Story Quality. Formal quality consists of the number of filled-in form
fields (e.g., [title]) needed to identify a fulfillment status based on the story for-
mat [4]. A story should contain a set of information to maintain the promise
for conversation. The scale is ordinal, with values of 0,1, ...,6. Lexical quality is
based on text properties, such as sentences and words, to compute the readabil-
ity as a number [6]. It addresses the complexity of the lexical structure in which
information is encoded that must be decoded by developers. The scale is ratio-
nal, ranging from 0 to 100. Next, semantical quality measures the percentage of
business keywords (e.g., VAT) versus the total number of words to indicate the



108 D. Hallmann

strength of the value focus for the customer [18]. It highlights semantic details
that developers must decipher to identify the concepts. The scale is rational,
ranging from 0% to 100%. Finally, saturation quality focuses on the number of
changes in form fields (e.g., [what]) prior to implementation. It covers a satu-
ration status because documents must be refined to increase their benefit as an
information source [4]. The scale is rational, ranging from 0 to greater than 20.

Developer Experience. Language and tool experience addresses the average
language (e.g., Java) and tool (e.g., editors) experience in time of the team [2].
Developers must be familiar with feature sets and limitations to design feasi-
ble implementation approaches. The scale is rational, ranging from 0 to greater
than 6 years. Platform experience focuses on the infrastructure (e.g., database)
experience necessary to manage components essential for the application to run
[2]. The scale is rational, ranging from 0 to greater than 6 years. Next, applica-
tion experience covers knowledge of the application components involved in the
estimation process [2]. The team must implement the story content in the exist-
ing source code, and therefore, changes must be evaluated to provide a correct
estimation. The scale is rational, ranging from 0 to greater than 6 years. Finally,
teamwork experience covers the time that colleagues have worked in teams to
gain thorough collaboration and communication social experience [1]. The scale
is rational, ranging from 0 to greater than 6 years.

Shared Mental Model. Model basis describes the percentage of developers in
the estimation session versus the total number of people on the team. A shared
model is possible when many developers are part of a user story discussion
to acquire similar information. The scale is rational, ranging from 0% to 100%.
Model similarity represents the percentage of developers versus the total number
of people in the session, in which the estimate is equal to the final estimation
result. The indicator adapts approaches from a similarity rating [13] to evaluate
the team agreement to the story point value at the end of an estimation. The
scale is rational, ranging from 0% to 100%. Next, model accuracy focuses on
the number of form fields mentioned during the process. It measures the model
accuracy by providing the story details of the author to the developers. The scale
is ordinal, with values of 0,1,...,6. Finally, model saturation [15] measures the
number of questions asked by developers while discussing a story. Additional
questions and answers can be helpful in refining ideas within the team. The
scale is rational, ranging from 0 to greater than 20.

Project Success. People success (developer) is defined to measure the percent-
age of developers versus the total number of people in the estimation who are
indicating happiness (e.g., through utterances) [17]. It addresses developers who
can build a mental model [5]. The scale is rational, ranging from 0% to 100%.
People success (customer) covers the percentage of accepted acceptance criteria
versus the total number of criteria in a customer review. It reflects a satisfaction
status [14] and includes the quality criteria that stories should be testable. The
scale is rational, ranging from 0% to 100%. Next, process success (estimation) is
the percentage of time that an estimation is lower than the highest duration for



The Role of User Story Quality 109

a story point value. It corresponds to quick discussions [15] and reflects quality
criteria, in which stories should be negotiable. The scale is rational, ranging from
0% to 100%. Finally, process success (development) measures the percentage of
time that the team spends less on the implementation than the highest amount
for that story size. Time is calculated for the initial coding, functional issues and
bugs [16]. The scale is rational, with a range from 0% to 100%.

4 Preliminary Evaluation and Conclusions

As we worked on this paper, we began with the ex-post analysis and conducted
an exploratory factor analysis [3] of the model subarea for user story quality.
Our data set consisted of 74 user stories from a completed agile software devel-
opment project. The project from the German automotive sector was conducted
from March 2013 to December 2015 with a Scrum team of eight developers, one
product owner, and one Scrum master. We considered only fully developed user
stories that progressed equally through all development steps. Thus, the user
stories had the same prerequisites of increasing comparability.

Before performing the factor analysis, we reviewed preconditions to begin
appropriately and obtain details to further interpret the results. We first pre-
pared our data by eliminating eight outliers to mitigate incorrect results, so our
final data set contained 66 user stories. In addition, we evaluated the sample
size, which should be between 100 and 200, to obtain more accurate parameters
[3]. As our data set is smaller than 100, some limitations may be present in
the estimates. An overview of the indicator distributions and correlations is pre-
sented in Fig. 2. The results reveal a balanced distribution of semantical quality,
a slight left shift distribution of lexical and saturation quality, and a slight right
shift distribution of formal quality. Due to the small deviations, we can assume
an acceptable normal distribution for all indicators. In addition, we analyze the
multicollinearity of the indicators, as high correlations greater than 0.850 can
cause problems in estimating parameters [3]. The indicator correlations are low,
so we were unable to find multicollinearity.

Next, we tested the overall fit of the indicator specification for user story
quality. The analysis resulted in a chi-square (x?) statistic of 4.220 with two
degrees of freedom. The p-value was 0.121 at a significance level of p < 0.050.
This result demonstrates a sufficient overall fit of the model, with a p-value higher
than the significance level. In detail, our model can represent the structure in
our data set, as the theoretical model-implied indicator correlations are similar
to the empirical correlations (see Fig. 2).

In addition, we evaluated the indicator loadings and reliabilities to obtain
details regarding the internal consistency of our model. Recommendations of
the test theory [3] define indicator loadings higher than 0.300, reliabilities higher
than 0.600, and overall reliability with Cronbach’s alpha between 0.800 and 0.900
to be a good fit. Table1 displays our findings. Semantical quality achieves the
best fit, with high loading and reliability. Lexical quality has a medium fit with
a moderate loading and low reliability, and both formal quality and saturation



110 D. Hallmann

20 40 60 0 5 10 15
1 1 1 1 1 1 1 1 1 I_
Formal Quality Lo
-0.103 0.203 0225 [,
Al .
. .
N . . Lexical Quality
i . 3 .
| )
o] —-0.341 0.043
< 7 3 ;
O_ 8 o g
- * . |
H 3 D - - B
. HIERE Semantical Quality °
o o c e o :N
: A0 - -0.106 [,
H ..o ..0 _v—
. 1 I
. . e . (1] el
0
- ° H o N S ‘... . Saturation Quality
o . - . %
- . (J - .
ol 3 el ERy, G
SR AT
o 3 AR Y3
T T

e
N -
w
e K
o
o

Fig. 2. Distributions and correlations of indicators

quality have a low fit, as they fall below the loading and reliability index. The
low agreement with the internal consistency is also confirmed by the global test,
as the indicators measure user story quality with a correctness of 0.350, or 35%.

Table 1. Descriptive statistics and loadings of indicators

Indicator Mean Std. Dev.? Ind. Loading® Alpha (a)¢ Comp. Alpha (a)?
Formal quality 4.167 1.223 0.203 0.041 0.350

Lexical quality 42.280 12.345 —0.342 0.117

Semantical quality 11.347 6.397 0.997 0.995

Saturation quality 5.258 3.479 —0.106 0.011

a Standard Deviation, P Indicator Loading, ¢ Cronbach’s Alpha, 4 Composite Cron-

bach’s Alpha.

In summary, the overall fit suggests that our approach is promising in mea-
suring user story quality with the formal, lexical, semantical, and saturation
dimensions. Our indicators subsequently allow for a first evaluation of user story
quality in interaction with other constructs (see Fig. 1). However, our instrument

is not error free, as indicated by the

different loadings and low reliabilities. The

first cause for the weakness may be the low sample size and differences in the indi-
cator variances. We will first verify these causes and then enhance the loadings
and reliabilities to achieve better evaluation of user story quality in the further
ex-post analysis steps. These optimizations helps obtaining details regarding the



The Role of User Story Quality 111

relationship between quality and human, and project factors, which assists agile
requirements engineering research. Deeper insights also have benefits in practice.
The identification of “good” criteria aids to prepare design recommendations and
AT tools that support authors to write “good” stories.

Acknowledgments. Thanks to Dr. Schmid, Dr. Liittgen, Dr. v. d. Weth, unknown
reviewers, colleagues, friends, and my family for their great support.

References

10.

11.

12.

13.

14.

15.

Beck, K., et al.: The agile manifesto (2001). http://www.agilemanifesto.org.
Accessed 13 July 2017

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost
models for future software life cycle processes: COCOMO 2.0. Ann. Softw. Eng.
1(1), 57-94 (1995). https://doi.org/10.1007/BF02249046

Bithner, M.: Einfithrung in die Test- und Fragebogenkonstruktion. Pearson,
Miinchen [u.a.] (2011)

Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Reading (2004)

Converse, S., Cannon-Bowers, J. A.; Salas, E.: Shared Mental Models in Expert
Team Decision Making. Individ. and Gr. Decis. Mak.: Curr. Issues. 221-246 (1993)
Flesch, R.: A new readability Yardstick. J. Appl. Psychol. 32(3), 221 (1948)
Hallmann, D., Schmid, U., Weth, von der, R.: Gemeinsame mentale Modelle in der
agilen Softwareentwicklung: Ein Ansatz zur Erstellung von Gestaltungsempfehlun-
gen fiir gute“ erfahrungsspezifische User Stories. In: Informatik 2016. LNI, vol.
P-259, pp. 1969-1974. GI (2016)

Hallmann, D.: The COCOMO-models in the light of the agile software develop-
ment. Technical report no. 104/2018, Bamberger Beitridge zur Wirtschaftsinfor-
matik und Angewandeten Informatik, University of Bamberg (2018). https://doi.
org/10.20378 /irbo-53211

Haugen, N.C.: An empirical study of using planning poker for user story estimation.
In: AGILE 2006, pp. 9-34. IEEE (2006). https://doi.org/10.1109/AGILE.2006.16
Jeffries, R.: Essential XP: Card, Conversation, Confirmation. https://ronjeffries.
com/xprog/articles/expcardconversationconfirmation/. Accessed 7 Mar 2019
Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford
Publications, New York (2015)

Mahnic, V., Hovelja, T.: On using planning poker for estimating user stories. J.
Syst. Softw. 85(9), 2086-2095 (2012). https://doi.org/10.1016/j.jss.2012.04.005
Mohammed, S., Klimoski, R., Rentsch, J.R.: The measurement of team mental
models: we have no shared schema. Organ. Res. Methods. 3(2), 123-165 (2000).
https://doi.org/10.1177/109442810032001

Motogna, M.: Customer satisfaction in IT professional services research. In:
Vaduva, S., Fotea, 1.S., Thomas, A.R. (eds.) Development, Growth and Finance
of Organizations from an Eastern European Context, pp. 75-99. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-54454-0_5

Raith, F., Richter, 1., Lindermeier, R., Klinker, G.: Identification of inaccurate
effort estimates in agile software development. In: APSEC 2013, pp. 67-72. IEEE
(2013). https://doi.org/10.1109/APSEC.2013.114


http://www.agilemanifesto.org
https://doi.org/10.1007/BF02249046
https://doi.org/10.20378/irbo-53211
https://doi.org/10.20378/irbo-53211
https://doi.org/10.1109/AGILE.2006.16
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/
https://doi.org/10.1016/j.jss.2012.04.005
https://doi.org/10.1177/109442810032001
https://doi.org/10.1007/978-3-319-54454-0_5
https://doi.org/10.1109/APSEC.2013.114

112 D. Hallmann

16. Ramasubbu, N., Balan, R. K.: Overcoming the challenges in cost estimation for
distributed software projects. In: ICSE 2012, pp. 91-101. IEEE (2012). https://
doi.org/10.1109/ICSE.2012.6227203

17. Rodrigo, M. T., Baker, R. S.: Coarse-grained detection of student frustration in
an introductory programming course. In: ICER 2009, pp. 75-79. ACM (2009).
https://doi.org/10.1145/1584322.1584332

18. Wake, B.: INVEST in Good Stories, and SMART Tasks. http://xp123.com/
articles/invest-in-good-stories-and-smart-tasks/. Accessed 30 Nov 2012

19. Zelazny, L. M., Belanger, F., Tegarden, D.: Toward a model of information sys-
tem development success: perceptions of information systems development team
members. In: ICIS 2012, pp. 1649-1669. AIS (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1109/ICSE.2012.6227203
https://doi.org/10.1109/ICSE.2012.6227203
https://doi.org/10.1145/1584322.1584332
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://creativecommons.org/licenses/by/4.0/

Large-Scale Agile



®

Check for
updates

Large-Scale Agile Transformation: A Case
Study of Transforming Business, Development
and Operations

Nils Brede Moe®™ and Marius Mikalsen

SINTEEF, Strindvegen 4, 7465 Trondheim, Norway
{nils.b.moe,maius.mikalsen}@sintef.no

Abstract. Today, product development organizations are adopting agile meth-
ods in units outside the software development unit, such as in sales, market, legal,
operations working with the customer. This broader adoption of agile methods has
been labeled large-scale agile transformation and is considered a particular type
of organizational change, originating in the software development units. So far,
there is little research-based advice on conducting such transformations. Aiming to
contribute towards providing relevant research advice on large-scale agile transfor-
mation, we apply aresearch-based framework for evaluating organizational agility
on a product development program in a maritime service provider organization.
We found that doing a large-scale agile transformation involves many significant
challenges, such as having a shared understanding of the problem, getting access
to users, and getting commitment to change that needs to be done. In order to over-
come such challenges, we discuss the need for a holistic and integrated approach
to agile transformation involving all the units linked to software development.

Keywords: Large-scale agile transformation - Agile methods - Large-scale -
Case study

1 Introduction

Software development teams are currently working on developing products providing
new digitally enabled customer experiences - while simultaneously incubating and accel-
erating digital innovations - are facing increasingly complex problems to be solved. Part
of the complexity is because solving such problems involves relying on several actors
outside of the agile software development team [1, 2]. One example is close cooperation
with the business development unit needed in order to achieve the potential advantages
of a continuous business and development process [3]. Another example is the need
for fast feedback from the customer, which in agile software development is realized
by the introduction of frequent software releases to the customer or market. Further, a
transformation to continuous delivery needs to consider units such as operations (i.e., the
customer-facing side of the organization) and sales and marketing [4]. Agile software
teams cooperating with other non-agile units represent a challenge [8], as agile software
teams work highly iterative in a sense and respond manner. Other units may be more plan

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 115-131, 2020.
https://doi.org/10.1007/978-3-030-49392-9_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_8

116 N. B. Moe and M. Mikalsen

and document-driven. The need for agile software development teams to interact with
other units in the organization dynamically and responsively is why companies today
aim to scale agile methods beyond software development. We understand such scaling
as a large-scale agile transformation in the organization.

As agile methods scale and more units in the organization or entire organizations
become agile, it is referred to as organizational agility. Overby et al. [5] define orga-
nizational agility as “the ability of firms to sense environmental change and respond
appropriately,” and show the different combinations of sensing and response capabili-
ties that organizations should have. They argue that a company that is highly effective
at sensing environmental change but is slow to act or acts inappropriately cannot be
considered agile. Likewise, a firm that responds appropriately will not be agile if it is
unable to sense the correct opportunities to follow. In an agile organization, therefore, if
operations sense a change in customer behavior, software development must change the
digital customer experience must change, and so must sales and marketing must change
accordingly. Worley et al. [6] argue that “agility allows an organization to respond in a
more timely, effective, and sustained way than its competitors when changing circum-
stances require it.” Having the ability to make timely and effective and sustained change
results in sustained high performance. Worley et al. (ibid.) introduce a framework to
assess organizational agility based on the literature of organization design and flexible
and agile organizations. The framework was validated with studies of performance data
from 20 firms and interviews with executives. The framework explains routines, the
features of these routines, and describes how agile organizations apply them. In order
to grasp large-scale agile transformation, we will apply the framework. We chose that
particular framework because it is based on organization studies theory and on findings
from empirical studies (the framework is detailed in Table 1 in Sect. 2). However, as of
yet, few other researchers have tested the framework. Motivated by the need for under-
standing how agile software development teams can interact with other units, how to
do a large-scale agile transformation, and the need for research on frameworks for a
large-scale agile transformation we ask the following research question:

How is a Large-Scale Agile Transformation Done in Practice?

In this paper, we examine large-scale agile transformation in the context of software
product development. We understand an agile transformation as broadening the use of
agile methods in an organization, that is, involving sales, marketing, development, and
operations. The remainder of the paper is organized as follows: In Sect. 2, we present
relevant literature on large-scale agile transformation and the agile organization frame-
work we use for understanding such transformation. In Sect. 3, we describe our research
method in detail. In Sect. 4, we present results from a case study using the framework.
We discuss our findings in Sect. 5. Section 6 concludes and presents key findings from
the study.

2 Background

In this section, we present existing research on large-scale agile transformation, identify
a gap in the research, and suggest a framework for understanding such transformations.



Large-Scale Agile Transformation: A Case Study of Transforming Business 117

2.1 The Challenges of Large-Scale Agile Transformation

Accelerating rates of technological change, shifting customer behavior, and changing
business models and markets necessitate software development that is customer-centric,
iterative, continuous, and experimental [1]. Organizations apply agile methods to these
digital transformations in order to allow themselves to create, react to, embrace, and
learn from change while enhancing customer value [7]. While agile methods have tra-
ditionally been practiced within software development teams, there is now a need for
using agile methods for interaction between software teams and other non-development
organizational units, such as markets, sales, and operations. In practice, this requires a
close and continuous linkage between business units (market, sales, and operations) and
software development units. The process of continuously assessing and improving this
link is described as BizDev [3].

Dikert et al. [8] report that interaction with non-development units using agile meth-
ods is the second most challenging aspect of large-scale agile transformations. Chal-
lenges include adjusting to an incremental delivery pace, adjusting to product launch
activities, and organizational reward models that do not encourage cross-unit collabora-
tion. Working with agile methods across different units, therefore, involves handling an
increasing number of actors, interface towards existing systems, and unexpected inter-
dependencies [9]. For organizations with hierarchical and centralized decision-making
structures, agile methods cause friction between management that work in traditional
ways and agile units [10, 11].

2.2 Transforming Business, Development and Operations

From the above reported practical challenges with a broadening of the agile method
towards including business and operation units, there is a need for a theoretical framework
thatis capable of explaining what is needed to scale agile to the wider organization. To that
end, we have chosen to apply a research-based framework for assessing organizational
agility [6]. The framework shows that Agile organizations ought to have a set of strategies,
structures, and systems that drive them towards higher performance and business agility.
Four routines of agility are key:

e Strategizing: How top management teams establish an aspirational purpose, develop
a widely shared strategy, and manage the climate and commitment to execution

e Perceiving: The process of broadly, deeply, and continuously monitoring the environ-
ment to sense changes and rapidly communicate these perceptions to decision-makers
who interpret and formulate appropriate responses.

e Testing: How the organization sets up, runs and learns from experiments.

e Implementing: How the organization maintains its ability and capacity to imple-
ment changes, both incremental and discontinuous, as well as its ability to verify
the contribution of execution to performance.

The above routines for strategizing, perceiving, testing, and implementing have 14
dimensions, outlined in Table 1 below.



118 N. B. Moe and M. Mikalsen

Table 1. The conceptual framework for evaluating organizational agility developed by Worley,
Williams, and Lawler [6]

Routine

Feature

Description

Strategizing

How top management teams establish an
aspirational purpose, develop a widely shared
strategy, and manage the climate and
commitment to execution

Sense of shared purpose

The purpose or mission (outcomes other than
profit or growth) is widely shared. Values
embedded in these statements drive behavior on
a daily basis

Strategic intent

The current business strategy is relevant in
today’s market. It clearly distinguishes the firm
from other companies and describes the business
model (how we make money) but is flexible
enough to change on short notice

Change-friendly identity

There is a clear sense that “who we are” and
“what inspires us” aligns with the organization’s
brand and reputation. This long-term strategy
explains success and encourages the
organization to change

Perceiving

The process of broadly, deeply, and continuously
monitoring the environment to sense changes
and rapidly communicate these perceptions to
decision makers who interpret and formulate
appropriate responses

Strong future focus

The organization possesses effective processes
for exploring the future deeply

Maximum surface area structure

The organization is structured in such a way that
many people maintain direct and continuous
contact with different parts of the business
environment

Vertical information sharing

Information from the environment gets to
decision-makers rapidly, in an unfiltered way.
Information flows easily, in both directions,
between the bottom and top of the organization

Transparent information

Business, financial, competitor, and
organizational information is easily found and
widely shared in the organization

Testing

How the organization sets up, runs, and learns
from experiments

Flexible resource allocation systems

Capable resources (people, money, time, tools)
are available and can be readily deployed to
experiment with new ideas

(continued)



Large-Scale Agile Transformation: A Case Study of Transforming Business 119

Table 1. (continued)

Routine Feature Description
Encourages innovation Thinking of new ideas, new businesses, and new
ways of working is encouraged in the
organization
Learning capability Experience with running experiments is

captured and applied with each new round so
that the company’s capabilities are continuously
improved

Implementing How the organization maintains its ability and
capacity to implement changes, both incremental
and discontinuous, as well as its ability to verify
the contribution of execution to performance

Change capability There is a pragmatic ability to change collective
habits, practices, and perspectives. It is
embedded in line operations, not isolated in staff

groups

Development orientation A human resource strategy of building new
skills, competencies, and knowledge is clearly
articulated

Flexible reward systems Incentive systems in the organization—both

monetary and nonmonetary—reward both
effective performance and change

Shared leadership A philosophy that views everyone in the
organization as a source of influence and
expertise is carried from the top to the bottom

Changing existing organizations is challenging. In some cases, it might be easier
to create new adaptable organizations rather than to change an existing organization to
be adaptable. However, all organizations have some agile features [12]. An alternative
to creating a new organization, therefore, is to start an agile transformation in a part of
the existing organizations that already have agile features, which software development
units typically do have. The focus in the transformations should be on which features to
address to increase agility and how to do it. A part of the organization can, for example,
be everyone involved in the development of a product from team management, operation,
software development, business, sales, legal, and marketing. In terms of how to do it,
as different units are drawn together, it is important to allow for divergent views and
opinions to be discussed to allow for transformation to occur. In the concept of “groan
zone” [13], it is recognized that everyone has their frame of reference.

Moreover, when people misunderstand one another (which is likely when they all
represent different units), they become more confused and impatient. Often, people do
not want to be in the groan zone, because it is uncomfortable, but a facilitator can help.
The facilitator’s main objective in the Groan Zone is to help the group develop a shared
framework of understanding.



120 N. B. Moe and M. Mikalsen

3 Research Design and Method

In this paper, we report findings from a company that conducted a large-scale agile
transformation in one of their product development areas (as suggested above [12]),
transforming sales and marketing, software development and operations at the same
time. Their product development area is our unit of study and allows us to study how
multiple disciplines from multiple organizational units interact when creating a software-
based product. Our study is a holistic case study [14]. According to Yin, case studies are
the preferred research strategy when a “question is being asked about a contemporary
set of events over which the investigator has little or no control” (ibid, p. 9). we followed
the five-step process proposed by Yin: 1) Case study design 2) Preparation for data
collection. 3) Collecting evidence: execution of data collection on the studied case. 4)
Analysis of collected data and 5) Reporting.

We collected data through observations of the collaboration over time in meetings
and workshops, through interviews, by studying documentation and by participating in
the planning of the agile transformation. The Company (name suppressed for anonymity)
is a multinational provider of services the energy, process, and maritime industries, and
was chosen because it participated in a research program on large-scale agile software
development. The organization had developed a digital solution for booking ship surveys
through a web portal. The process in which the digital solution replaced was manually
and very costly. Further, booking surveys were sub-optimized, resulting in ships doing
surveys in harbors that were not cost-effective and that did not allow all work to be done
at once. The potential cost savings from using the digital solution was estimated to be
over 10 million Euro per year. The challenge, as we entered the case, was that not cost
savings were not sufficient.

3.1 Data Collection and Analysis

Our data collection (Table 2) started in August 2018, when the company needed to
rethink the whole product development process in order to reach the estimated earn-
ings of the digital solution. The company recognized that a critical issue was that the
missing interaction between software development, sales, marketing, and operations.
The missing interaction and the need for improving the product led to a transformation
initiative. The researchers participated in all planning meetings of the initiative, lead
two of the workshops and had status and synchronization meetings with representatives
from the company, and conducted several interviews with key stakeholders. Besides,
four large international customers were visited and interviewed. These customer inter-
views covered the following topics: Describing the customer business process and model,
understanding the survey ordering process, reflecting on the usability of the new technol-
ogy introduced. All activities were documented by taking notes, meeting minutes, and
pictures of materials produced in the workshops. Also, we got access to product docu-
mentation, contracts, data on user activity on the digital portal, and plans. We ended the
data collection in September 2019. The results from the transformation were presented
back to the practitioners involved regularly in feedback meetings. More details about
the case, the product, and the large-scale agile transformation is found in the results.



Large-Scale Agile Transformation: A Case Study of Transforming Business 121

Table 2. Data sources

Data Description

Interviews 11 interviews. 1 business developer (2 times),
1 product manager (3 times), 1 development
manager, and 1 portfolio manager. Interview
with 4 major international customers

Planning meetings, workshops and feedback | 2 workshops where conducted with

meetings stakeholders from all units. The results of the
workshops were analyzed and presented back
to the participants in feedback meetings.
Additional data was collected from planning
meetings

Documents and user behavior statistics Analyzed user behavior (data gathered from
the portal), strategic documents, roadmaps,
innovation plans and contract templates

We used a variety of strategies to analyze the material [15]. First, we described the
project and context in a narrative to achieve an understanding of what was going on in
the large-scale agile transformation project. Then, we described aspects of the transfor-
mation by using a framework for assessing organizational agility [6] and analyzing the
different routines proposed by the framework (as introduced in Table 1). Further, we
analyzed the data by mapping it to the continuous processes described by Fitzgerald
et al. [3] (i.e., continuous planning, development, and operations) to understand which
processes were disconnected. We hypothesized that the disconnected processes were a
core reason for why the company did not realize the potential of the solution. Then we
categorized the data according to the organizational agility framework [6]. In the anal-
ysis, we emphasized how the need for change was interpreted by different participants
in the transformation.

4 Results

We first describe how the need for an agile transformation was detected (diagnosing
phase), then we describe the outcome of the main activities in the transformation work-
shops and the work done after each workshop. Based on the results, we identified an
understanding of how elements of a large-scale agile transformation are dealt with in
practice.

4.1 Diagnosing

The new product was initiated in 2016, and the goal was to create a system for ship owners
to book services for their ships through a portal instead of using the previous manual
process. Booking through the portal makes it possible to suggest what combination
of services to offer, and when the service should be conducted on a specific ship in a



122 N. B. Moe and M. Mikalsen

specific port. A system based on machine learning could potentially reduce the cost of
surveyor traveling, reduce the total number of services needed, the need to offer services
in expensive ports, and reduce the time a vessel needs to be in a port. Both the customers
and the company could gain significant savings by replacing the manual booking process.
The product development of the booking portal, which also included machine learning,
went through several phases, from exploration, ideation to implementation. The work
started in April 2016 by an analysis of the market, customer needs, and a concept study. A
version of the product was tested in June 2017, and the product was launched in October
2017. Figure 1 shows the innovation journey as described by the company. All managers
in the company got training in the innovation method. The planned functionality was
implemented and launched, but the product did not meet its expectations. While the
software development team implemented all the requested functionality, still only 30%
of the customers followed the recommendation by the digital booking process.

INNOVATION JOURNEY

Sep-Dec 2016:
« Prototyping & Piloting

+ MVP Design
* GO Decision

7

Apr-Sep 2016:
» Fact analyses

« User journey & //7 G
7

Pain point analyses

Jan-Oct 2017:
X . Specification
NCH € . Ssw

development
* Roll-out
lanning

Fig. 1. The innovation journey from 2016-2017.

Further, the customers, in general, did not accept the recommendations provided by
the planning part of the booking system. Recommendations were related to what services
a ship should have, in which port the job should be done in, and when the service should
happen. Further, there were many customer complaints regarding invoices. It became
clear that there was confusion among some customers regarding the service ordered
and the service provided by the company. Because most customers did not use the new
booking process and, in general, did not accept the recommendations provided by the
system, the cost savings were assessed to be very limited in August 2018.



Large-Scale Agile Transformation: A Case Study of Transforming Business 123

A diagnosing workshop was initiated involving experts from software development
and business and customer insight. The diagnosing workshop concluded that the lack of
change in user behavior (such as lack of use) could not be explained by the design of
the portal and challenges with the user interface alone. The workshop concluded on the
following explanations on why the environed results were not achieved:

e The company lacked important information on how the customers actually conducted
the former manual booking process.

e The overall company strategy was not aligned with the product strategy. While the new
booking system required the company to offer services in limited ports, the company
did not achieve a reduction in the number of ports where they had to offer services.
Parts of the company still had wanted services to be provided in these ports, even if it
was not cost-effective for the company as a whole.

e Internal processes were not coordinated to help the customer in changing his behaviour
(e.g., contracts, support, customer contacts).

A transformation was initiated to make all involved units in the company work
together to change how they offered the digital service and then change customer behav-
ior. The maritime sector is an old and traditional sector, which makes changes in business
processes in the sector slow. Further, this transformation would enable the company to
sense the customer needs better, and then respond to the needs as they change. The agile
transformation needed to include the following, different organizational units: software
development, legal, market, sales, business, and operations. The software development
department had been working in an agile way since 2008 and was experienced in using
agile, while the other units were still working in a non-agile way. It was agreed to conduct
several workshops involving key stakeholders from all the different units. The question
was how to conduct workshops to accelerate a transformation that would enable a large
part of the company to sense and respond?

Different stakeholders from very different units in the company would necessarily
represent different cultures, practices, and ideas. The workshop then needed to facilitate
a period of divergent thinking before they could enter the “groan zone”. After a group of
diverging ideas brainstormed a list, they found it challenging to discuss the ideas. Every-
one had their frame of reference coming from the different units. Moreover, as people
misunderstood each other, they become more confused and impatient. The researchers
acted as facilitators in the workshops and helped guide the group through the groan zone.

4.2 Unfiltered Access to Customer Insight and Aligning Strategies

The first workshop had representatives from key internal stakeholders, such as customer
insight, software development, and data analysis (analyzing the customer data), business,
sales, and marketing. The highly cross-functional group had the authority to change
the future direction of the technical solution and company internal processes. Each
stakeholder was responsible for changes in their unit. The focus shifted from: “how do
we provide a better user interface to change customer behavior,” to “what changes do
we need to implement in our organization to be able to change customer behavior.” It
became evident that to deliver an improved service in fewer ports, the company had



124 N. B. Moe and M. Mikalsen

to reduce the number of other ports in which the service was delivered. However, then
some service stations around the world had to be closed down, and this needed top
management support. Such significant changes created internal resistance, as a part of
the organization would then need to reduce its service offerings and, as a consequence,
would earn less money. Through workshops and meetings, the cross-functional group
concluded:

e How certain parts of the sales unit operated where hindering part of the product
development organization from meeting directly with the customer, which hindered
a more in-depth customer insight. To better understand who uses the new system and
those who do not use it, there was a need for direct contact between the software
development department and the customers. Several of the previous decisions related
to product development were made on wrong assumptions.

e For the company to adjust internally (e.g., stopping offering services in some ports),
it was essential that cost and performance are measured on the company level and not
per organizational unit. Since costs traditionally were measured per unit, each unit
that will reduce their income will resist changes. There was a need to work closely
with the world regions that needed to change their offerings of ports. New KPIs (key
performance indicators) needed to be set for the whole company, not for individual
units.

e Better understand the link between the new business model of the company and how
the model is linked to a change in customer behavior. Involving the service planning
unit in order to change future contracts was seen as a critical measure.

e Better use of statistics on user behavior in the portal. There is a need to continue
analyzing patterns of various customer behavior, and to generate new Power BI
Reports.

e Use Machine Learning in a new way to understand better which services to provide
in which ports, and which services not to offer.

4.3 Testing, Implementing and New Improvement

Based on more unfiltered access to the customer, new parts of the organization got access
to new and essential insights. The situation was further improved by organizing meetings
with valuable customers and by insight from interviewing these customers. The interview
guide was targeted to understand the enablers of barriers to changing customer behavior.
As a result, more insights into customer behavior were generated, particularly on the
internal business processes that happened before the customer used the portal i.e., the
customers’ internal planning process. Insight was also gained on what was most valuable
when the customer made choices in the portal. Through the insight gained through the
interview it was found why the customers did not accept recommendations from the
new system. The customer behavior was driven by the need of making sure the ship
was always operating, and therefore a familiar port is associated with less risk for the
customer. One customer commented: “The port predictions for container vessels are of
no benefit because it does not propose ports I prefer.”



Large-Scale Agile Transformation: A Case Study of Transforming Business 125

As a result, from the customer interview process, it was concluded that there was a
need to understand how the booking system better could support customer preferences,
and further insight was needed on how to enable the customer to order services in an
unfamiliar port. Knowledge from the workshops and customer activities was fed into the
survey planning centers of the company (the planning centers that were spread around
the world were engaged in helping customers plan their work). Changes in how the
planning centers operated based on new insight is an example of the operational units
change the way they deliver the services.

4.4 Next Steps

After changing the software and how the company interacted with the customers, it
became evident that the changes had helped to result in the company starting to improve
earnings on the product and service they provided radically. However, at the same time,
it was clear that the agile transformation now also needed to include more unites, and
that it would be an ongoing process with no specific end state.

The company started testing new functionality, which started changing customer
behavior. Further, from a more in-depth analysis of the interviews, the need to continue
pushing the customers to change their behavior by developing new contracts was con-
sidered an essential next step. Involving contract responsibilities in this phase was vital,
and the second workshop was conducted. However, it became clear that to get the full
effect of new features in the system; there was a need to segregate customers into two
segments and to identify the service levels for these segments. Creating customer seg-
ments also put forward demands for contracts that would support the segments and, at
the same time, needed to enable the customer behavior change to continue. The need for
what was known as “smart contracts” was agreed upon in the last workshop. However,
what a smart contract looked like was not fully understood.

Further, new questions emerged: is the salesforce ready to sell new products and
negotiate new contracts for new customer segments? Are the customers ready to be
offered different levels of services based on different contracts (the maritime sector is an
old and conservative business)? It became evident in the workshop that sales and legal
unites needed to be linked closely with the product development, and that future work
was needed in this area.

4.5 Evaluating of Organizational Agility Using the Agility Framework of Worley

The agility framework defined by Worley et al. guided our agile transformation. The
framework includes routines for strategizing, perceiving, testing, and implementing and
has 14 dimensions (Table 1). To describe how a large-scale agile transformation is done
in practice, we then mapped our findings into the framework (Table 3).



126

N. B. Moe and M. Mikalsen

Table 3. An evaluation of organizational agility using the agility framework of Worley, et al. [6]

Routine

Feature

Results/improvements

Strategizing

Sense of shared
purpose

Everyone was aware of the purpose of the program. To make the
customer book in the portal and to make smart bookings. However,
the units sub-optimized their performance by focusing on their own
goals. The need to Involve all units and to align them from the
beginning was not understood. It was not until the product was
launched and experimented with, and the lack of earnings became
clear, that the shared purpose was understood

Strategic intent

The strategic intent of digitalizing and transforming a traditional
sector (maritime) was not unique, however, the combination of
applying machine learning, domain knowledge, and customer and
vessel data were considered a new business strategy in the market. It
became clear that the changes in customer behavior and technology
also resulted in the need to change business models (such as sales)

Change-friendly
identity

The new product aligns with the company brands (removed because
of the need for anonymity). There is a strong focus on innovation,
and all managers have been through management courses. Pressure
on cost due to increased competition leads to a continuous search for
innovation through digitalization

Perceiving

Strong future focus

The company had a strong focus on digitalizing the maritime
industry, and to use the market position and domain insights to do
so. Having the willingness to launch such projects and to continue
working with the clients on the challenges shows signs that they are
working to explore the future by experimenting with new digital
solutions and business models

Maximum surface
area structure

While it was evident that the part of the organization was missing
direct contact with the customer, this changed throughout the
transformation initiative. Throughout the change process, the key to
success was unfiltered access to customers from the development
side and to increase their ability to sense the need of the customer.
Easy access to customers was particularly important since the
customer did not always know what they wanted

Vertical It took a long time for the organization to change — over a year. We

information did not investigate this issue in particular, but the time it took to

sharing change can be considered as an indication that there is room for
improved vertical information sharing

Transparent The information was not accessible across units in the beginning.

information However, bringing key stakeholders from different units together in

targeted workshops and focusing on collecting and presenting
relevant and indicative data helps. The workshop also helped in
removing misconceptions (such as reasons for a solution not being
used)

(continued)



Large-Scale Agile Transformation: A Case Study of Transforming Business

127

Table 3. (continued)

Routine Feature Results/improvements
Testing Flexible resource | The portal was easy to change, as it did not require much
allocation systems | development capacity. However, there was a delay when new
requests emerged, as development resources can only be dedicated
to fixed periods. They had many other projects to attend. Further,
because of people being busy, it took a long time to get all the
people from different units to meet
Encourages The innovation was partly bottom-up, in that suggestions and ideas
innovation could come from everyone. However, resistance emerged when new
ideas challenge the existing business models and could disrupt the
existing operations of the company
Learning They had constant feedback from experiments through MVP that
capability could be launched fast to the customer. Further, there was a
willingness to experiment with organizational development. Getting
people together across units did not require extra funding
Implementing | Change capability | There was a low level of the hierarchy, and easy to get people from
different units into the same room to discuss. Throughout the
product development habits were changed; however, we did not
research to what degree they spread to the next project
Development We did not investigate the human resource strategy
orientation

Flexible reward
systems

We found that having a monetary reward system based on individual
units as limiting the potential of the digital solution. The sales
apparatus that was based in certain regions did not have sufficient
incentives to push customers over to the digital solution, as this
could limit their potential rewards

Shared leadership

When there was identified a need to work across unites to change the
organization and the product, it was not a problem to get access to
the needed expertise. Moreover, the expertise had decision making
authority, even though senior management needed to be informed

5 Discussion

Large-scale agile transformation is a critical issue in responding to the digital transfor-
mations that are ongoing in many sectors [1]. Several barriers to such transformation
seen from industry experience have been identified, for example, change resistance [8],
and inter-team coordination challenges [16]. While conceptual solutions such as contin-
uous development and BizDev has been suggested [3], there is a lack of research-based
advice on how agile transformations are to be performed in practice. Driven by our
research question — How is a large-scale agile transformation done in practice? - we
have reported findings from a case study of a maritime service provider that aimed to
transform service bookings digitally. In the following, we answer this research question
by discussing our findings in light of a research-based framework on agile organizations

[6].



128 N. B. Moe and M. Mikalsen

We found how a typical innovation journey was followed, a product was developed
and launched, but the economic gains did not meet expectations. Importantly, as a con-
sequence, the company started investigating the reasons why the product did not meet
its projected earnings. One critical insight during the diagnosing phase was that it was
not the design of the digital solution per se that caused the lack of customer uptake.
For the solution to have its envisioned effects, it would require a change in the internal
organization to be able to change customer behavior. The company started a change in
a product development environment that already had some agile features, i.e., including
software development that was already using agile methods, as suggested by [12]. The
change process was done in order to improve its capacity for sensing customer behavior
and adapting the digital solutions. The software development and business development
units needed more unfiltered access to customer behavior. This is in line with [5], who
argue that both sensing and adapting is essential for organizational agility.

We analyzed the steps taken by the unit under study in light of a research-based
framework on agile organizations [6]. We found how the part of the organization doing a
large-scale organizational transformation addressed all four routines in the framework.
The first routine, strategizing, involved struggles to get a sense of shared purpose across
the organization, changing business model in terms of offering services in fewer ports,
and being committed to change. The second routine, perceiving, involved being willing
to experiment with new products, being able to change who gets access to customer
insight and that bringing stakeholders together across different units is a critical activity
in enabling change. The third routine, testing, we found that it was not changing the
technical parts of the system that was the most challenging, but rather to being able
to experiment with the organization and making the necessary changes. The fourth
routine, implementing, we found that monetary rewards systems and involvement of
expertise with decision-making authority were vital in making transformation occur.
The challenges and steps taken are in line with Dikert et al. [8] findings that show
how integrating non-development units can be restricted to reward models that do not
encourage cross-unit collaboration.

Our findings indicate that some of the frictions agile methods can cause [7], such as
when the new portal started changing the business model of the sales apparatus. Such
frictions indicates that large-scale agile transformation needs new decision structures,
which means that a company needs to move from a hierarchical decision structure, and
isolated decision structures for each department or unit, to a decision structure across
the operational and strategic level of individual units.

Finally, we found that an agile transformation is an ongoing process and that the
output of an agile transformation is more continuous processes covering several units,
many of which are outside software development. A critical insight is that continuous
processes require continues learning and continuous experimentation [3]. Our mapping
of findings from the case to the agility framework presented in Table 3 signifies the need
for continuity.

5.1 Limitation and Future Research

The main limitations of our study are the single-case design and the possibility of bias
in data collection and analysis. The fact that we used a single-case holistic design makes



Large-Scale Agile Transformation: A Case Study of Transforming Business 129

us more vulnerable to bias and eliminates the possibility of direct replication or the
analysis of contrasting situations. Therefore, the general criticisms about single-case
studies, such as uniqueness and special access to key informants, may also apply to
our study. However, our rationale for choosing the company as our case was that it
represents a critical case for explaining the challenges of conducting a large-scale agile
transformation in practice. Our mode of generalization is analytical, i.e., we used a
previously developed framework as a template with which we compared the empirical
results of the case study, which is similar to Yin’s [14] concept of Level Two inference.

Another possible limitation is that we based much of our data collection and anal-
ysis on semi-structured interviews [17]. The use of multiple data sources made it pos-
sible to find evidence for episodes and phenomena from more than one data source;
we also observed, talked to, and interviewed the project members over a period of 13
months, which made it possible to study the phenomena from different viewpoints as
they emerged and changed.

The results of this study point out several directions for future research. Firstly, our
study highlights several challenges that must be met when conducting a large-scale agile
transformation. Accordingly, further work should focus on identifying and addressing
other problems that may arise when conducting an agile transformation. Secondly, the
framework should be used for studying more mature organizations or departments in
order to get a better understanding of the main challenges in such transformations.
The observed transformation was the first in the company using the framework. When
studying the company doing the next transformation on another product, this should
be studied since the case then will be more mature, and other issues from using the
framework will emerge.

6 Conclusion

We have conducted a 13-month study of professionals in a large-scale agile transforma-
tion. Our case study of conducting an agile transformation highlights several significant
challenges that need to be overcome for a transformation to be successful. This work
reports a case study of how a transformation can be done in practice, and also apply a
framework for understanding and conducting such an agile transformation. This work is
an essential step in its own right since there is much confusion around terms related to
agile transformations, similar to early research on the agile transformation of teams [18].
The need for a framework for agile transformation outside of the software development
unit is evident when one considers the emergence of phenomena such as Enterprise
Agile, Beyond Budgeting, DevOps, Lean Startups, and many other concepts from busi-
ness agility in general. These are all indicative of the need for a holistic and integrated
approach across all the units linked to software development.

Acknowledgement. This research is funded by the Digital Class project and the Research council
of Norway through grant 309631, and 2.0 which is partly supported by the Research council of
Norway through grant 236759.



130

N. B. Moe and M. Mikalsen

References

10.
11.
12.
13.
14.
15.

16.

17.

18.

. Mikalsen, M., Moe, N.B., Stray, V., Nyrud, H.: Agile digital transformation: a case study of

interdependencies (2018)

Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an empirical
study through the lens of relational coordination theory. In: Kruchten, P., Fraser, S., Coallier,
F. (eds.) XP 2019. LNBIP, vol. 355, pp. 121-136. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-19034-7_8

Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176-189 (2017)

Neely, S., Stolt, S.: Continuous delivery? Easy! just change everything (well, maybe it is not
that easy). In: 2013 Agile Conference, pp. 121-128 (2013)

Overby, E., Bharadwaj, A., Sambamurthy, V.: A framework for enterprise agility and the
enabling role of digital options. In: Baskerville, R.L., Mathiassen, L., Pries-Heje, J., DeGross,
J.1. (eds.) TDIT 2005. ITIFIP, vol. 180, pp. 295-312. Springer, Boston, MA (2005). https://doi.
org/10.1007/0-387-25590-7_19

Worley, C.G., Williams, T.D., Lawler, E.E.: Assessing Organization Agility. Wiley, San
Francisco (2014)

Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20(3), 329-354 (2009)

Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87-108 (2016)

Rolland, K.H., Fitzgerald, B., Dingsgyr, T., Stol, K.-J.: Problematizing agile in the large:
alternative assumptions for large-scale agile development. In: International Conference on
Information Systems, Dublin, Ireland (2016)

Cao, L., Mohan, K., Xu, P., Ramesh, B.: A framework for adapting agile development
methodologies. Eur. J. Inf. Syst. 18(4), 332-343 (2009)

Moe, N.B., Aurum, A., Dyba, T.: Challenges of shared decision-making: a multiple case study
of agile software development. Inf. Softw. Technol. 54(8), 853-865 (2012)

Worley, C.G., Lawler, E.: Agility and organization design: a diagnostic framework. Org. Dyn.
39(2), 194-204 (2010)

Kaner, S.: Facilitator’s Guide to Participatory Decision-Making. Wiley, Hoboken (2014)
Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2009)
Langley, A.: Strategies for theorizing from process data. Acad. Manag. Rev. 24(4), 691-710
(1999)

Stray, V., Moe, N.B., Aasheim, A.: Dependency management in large-scale agile: a case study
of DevOps teams. In: Proceedings of the 52nd Hawaii International Conference on System
Sciences (2019)

Diefenbach, T.: Are case studies more than sophisticated storytelling?: Methodological prob-
lems of qualitative empirical research mainly based on semi-structured interviews. Qual.
Quant. 43(6), 875-894 (2009)

Moe, N.B., Dingsgyr, T., Dyba, T.: A teamwork model for understanding an agile team: a
case study of a scrum project. Inf. Softw. Technol. 52(5), 480-491 (2010)


https://doi.org/10.1007/978-3-030-19034-7_8
https://doi.org/10.1007/0-387-25590-7_19

Large-Scale Agile Transformation: A Case Study of Transforming Business 131

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Improving Risk Management in a Scaled Agile
Environment

Eva-Maria Schon! ® @, Dirk Radtke?, and Christian Jordan?

1 University of Applied Sciences (HAW), Hamburg, Germany
eva-maria.schoen@haw-hamburg.de
2 OTTO GmbH & Co KG, Hamburg, Germany
{Dirk.Radtke2,Christian.Jordan}@otto.de

Abstract. Agile methods are designed for handling uncertainty as well as reduc-
ing risks in product development through transparency, inspection, and adaptation.
Applying an effective risk management is in the nature of agile methods. However,
when multiple agile teams work on the same product, a higher coordination effort
is required and more formal practices are applied. The objective of this paper is
to study how risk management can be improved in a scaled agile environment.
Therefore, we conducted a case study in a large-sized ecommerce company and
interviewed several project managers. The results show that there are differences
for risk management in terms of two contexts. On the one hand, informal risk man-
agement is rated as good enough for one autonomous team. On the other hand,
more formal approaches are needed, when several teams work on the same require-
ment. Furthermore, a tool for the support of risk management in a scaled agile
environment is presented. We can conclude that hybrid development approaches
consisting of agile practices and traditional practices, are beneficial, when several
teams work in parallel.

Keywords: Risk management - Agile methods - Agile software development -
Scaling agile - E-commerce

1 Introduction

Digital Transformation has an impact on the way an organization copes with challenges
that arise, such as rapidly changing markets, evolving customer experiences, and dis-
ruptive technologies. In this context, many organizations have already recognized that
agility is an important asset; they adopt agile methods like Scrum [1], Kanban [2], or
Extreme Programming [3] for product development.

Agile methods have an impact on the organizational culture because of the agile
values [4]. Those methods are designed to deal with complex, adaptive problems in the
domain of emergence. People in agile environments need to probe first, then sense and
then respond in order to handle the complexity [S5]. Moreover, agile methods provide
empirical approaches, which allow organizations to optimize predictability and control
risk caused by iterative and incremental approaches [1]. In light of this, applying an
effective risk management is in the nature of agile methods but is often implicitly handled.

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 132-141, 2020.
https://doi.org/10.1007/978-3-030-49392-9_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_9&domain=pdf
http://orcid.org/0000-0002-0410-9308
https://doi.org/10.1007/978-3-030-49392-9_9

Improving Risk Management in a Scaled Agile Environment 133

In larger organizations, several teams often work on one product. For this reason,
large-scale agile development becomes more important with the increasing spread of
agile process models. When several agile teams work together on a product, there is a
tension between the autonomy of a single team and the overall coordination of several
teams. This often results in a considerable coordination effort caused by functional or
technical dependencies among the teams [6]. Agile practices such as Daily Standup
Meeting, Kanban Board or Product Backlog support the transparent handling of risks
for an individual team. If several teams are working on the same requirement, these agile
practices reach their limits. This can lead to a reduction in transparency and decisions
cannot be taken on the basis of what is known. However, consistent practices and pro-
cesses across teams and implementation of a common tool are seen as valuable in helping
scaling agile methods [7]. Dingsg@yr et al. [8] address the topic of large-scale agile devel-
opment in a special issue. In particular, the special issue covers topics like the application
of scaling frameworks, knowledge sharing, product ownership, and decision-making.

In this paper, we aim to address the research question (RQ): How can the risk
management in a scaled agile environment be improved? Therefore, we conducted a
case study in the ecommerce sector. The ecommerce sector is known for its rapid market
development. Therefore, vendors need to react flexibly to changes and adapt early to
new technologies to provide a unique customer experience.

The paper is structured as follows: Sect. 2 gives a brief overview of related work.
Section 3 presents our research method and outlines the study context. Section 4 summa-
rizes the key findings of our study, covering gaps and measures as well as presenting a new
tool for risk management. Section 5 discusses the meaning of findings and limitations
of this study. Finally, Sect. 6 concludes this work.

2 Related Work

There is a difference between uncertainty and risk. Uncertainty can be perceived as both
an opportunity and a threat [9]. On the other hand, a risk is characterized as an event
that will have negative impacts when it occurs. In literature, some studies related to risk
management in agile product development can be found. Analyzing the related work,
we observe some similarities among the works. Authors investigate risk factors in agile
environments and propose approaches to mitigate the identified risks.

Shrivastava and Rathod [10] study risk factors that affect the performance of dis-
tributed agile product development. In this context, they present a categorization of risks
faced by practitioners as well as frequently used methods to reduce the impact of those
risks. In 2017, Shrivastava and Rathod [11] propose a risk management framework, that
consists of ranked risks for distributed agile development, its causes, and appropriate risk
management approaches. Elbanna and Sarker [12] analyzed risk factors related to adopt-
ing agile development across multiple sectors like utilities, transportation, or financial
services. In addition, they study their causes and consequences and present how different
organizations deal with those risks. Tavares et al. [13] propose an extensive list of risk
management practices for agile projects based on a literature review and relate them to
subcomponents of agile methods, which are ranked by experts in accordance with their
importance for risk management. Buganova and Simickova [14] investigate the possi-
bilities of the implementation of risk management in traditional and agile approaches



134 E.-M. Schon et al.

to project management. They provide a comprehensive comparison between traditional,
and agile and discuss the impact of risk management in the context of transportation
companies.

3 Research Method

The aim of this study is to investigate how risk management can be improved in a
scaled agile environment. To this end, we used a case study in order to investigate this
contemporary phenomenon in its context in industry [15].

3.1 Study Context and Research Setting

The case study was carried out in 2018 in a large-sized ecommerce company, located
in Germany. Today, the company generates more than 90% of its total sales through the
online shop otto.de. In the past financial year, 7 million customers ordered online from
OTTO. At peak periods, otto.de receives up to 10 new orders a second.

Currently, the team behind otto.de has 320 people working in 20 teams, of which
13 are functional teams that provide functions. Each team is purely vertical, consist-
ing of different professions (Product Manager, Analyst, Usability, Interaction Designer,
Quality, DevOps), and works in an interdisciplinary manner. They are fully responsible
for the whole development process and operations in the cloud. The rest of the teams
provide supporting services.

At the team level, there is complete freedom of choice for the team, as to which
methods, practices, or variations are suited best. For some teams, the process is already
ongoing for 200+ sprints. All core development teams are working on-site on a shared
open plan office ground. The company heavily relies on face-to-face communication
and tries out a flexible team assignment model, to support teams with laden backlogs.

Before conducting the study, we learned that there are two different contexts in
which risk management must be considered. On the one hand, there is the context of
continuous product development, in which agile teams implement features for the product
in an autonomous manner. In this study, this context refers to the work of an autonomous
team. This context is characterized by a decentralized, informal treatment of topics.

On the other hand, there is the context of the cross-team project, in which several
agile teams work together to implement requirements. This context is characterized by
explicit project constraints with regard to scope, timing, and budget. In comparison with
the previous context, a more formal procedure for implementation is used.

3.2 Data Collection and Analysis

We started with an analysis of the as-is situation (see Fig. 1). Therefore, we gathered
qualitative data by means of semi-structured interviews. The interview guidelines asked
questions related to the roles and responsibilities of the participants, the as-is situation
of risk management, types of risks, how risks are managed, and the measures taken. We
closed the interview with an open question, so that participants had the option to express
their further thoughts.



Improving Risk Management in a Scaled Agile Environment 135

In sum, we conducted eight face-to-face interviews with a duration of 45 min each.
We had four interviews with Production Leads, who are responsible for the context of
continuous product development. Production Leads are only responsible for a single
team. In addition, we had four interviews with cross-team project managers, who are
responsible for the context of cross-team projects.

ana |

e o + contextof. (o) O(O->
jfﬂ cross-team projects

©)
8 interviews interview m R0y — focus group

guideline —
context of continuous

product development

JIRE

G

Fig. 1. Research approach for analyzing the as-is situation

The interviews were documented in written form and aggregated into a result report.
Then, the result report was discussed in a focus group in order to playback the results to
the participants and to get feedback on the observations made so far. We discussed the
identified problems concerning risk management. The participants then came up with
measures that could be taken to remedy them.

4 Results

We will first provide an overview of the different scaling levels in order to present how
we optimized the risk management in the scaled agile environment under study. For this
purpose, we explain which measures have a positive effect on which level. Figure 2 shows
the optimized context after the measures have been applied. In particular, it outlines how
the handling of risks across the various scaling levels was optimized. The relationships
are as follows: a program has one or many cross-team projects, whereas a cross-team

Risk | 1..* 0..1 |Risk Register
0..*
o4l o3 0.1 1 1
1
1 1 1 1\l
Team Cross-Team Project Program
2.*%| 1 1.*x| 2
—_— —
context of continuous context of
product development cross-team projects

Fig. 2. Overview of the improved risk management in a scaled agile environment



136 E.-M. Schon et al.

project involves two or more teams. One team has none or many risks, which might be
part of a risk register. In addition, one cross-team project can have none or many risks.
A risk is documented by means of a template. In terms of the cross-team project, the
handling of risks is improved by means of a mandatory risk register. The important risks
of the cross-team projects are summarized into a risk register on the program level.

In the following, we will present our findings. We will outline how risk management
is handled in the two different contexts. We will then describe the measures that are used
to improve risk management.

4.1 Continuous Product Development vs. Cross-Team Project

Table 1 outlines how risk management is conducted in accordance with the two differ-
ent contexts (context of the continuous product development and context of cross-team
project). Risk management in the context of continuous product development is an inter-
nal responsibility of the team. Since the individual teams work very autonomously and
there is little dependency on other teams, the teams also deal with risks very differ-
ently. Nevertheless, there are some similarities. Implicit risk management is carried out
through agile practices. In the daily meetings, urgent problems are discussed and, so,
transparency about risks within the teams is created.

Table 1. Risk management in the context of continuous product development and in the context
of cross-team project

Context of the continuous product Context of cross-team project

development

Informal risk management by agile Formal risk management in the responsibility of
approach dedicated project manager

Agile practices like daily standups, review | Explicit clarification of risk-related conditions
meetings, and retrospectives promote a and escalation instances during the project setup
transparent management of risks

Regular exchange among teams on best Standardized approach for identification,
practices in risk management management, and evaluation of risks, based on
experience from previous, larger projects

Regular exchange with relevant stakeholders on
project risks

In comparison, more formal methods for risk management are used for the context
of cross-team projects. However, the way in which this is done depends strongly on the
project manager. In some cases, best practices from previous large-scale projects have
been applied and enriched with the knowledge and experience of the particular project
manager.



Improving Risk Management in a Scaled Agile Environment

137

4.2 Gaps and Measurements Related to Risk Management

After the results were discussed in the focus group (see Fig. 1), the participants came to
the conclusion that informal risk management is sufficient for the context of continuous
product development. In this context, therefore, only one workshop was conducted to
exchange best practices for risk management in order to sensitize the teams to the topic
and strengthen a conscious management of risks.

Table 2. Identified gaps in terms of risk management and measures to improve them

Context

Continuous product development

Cross-team project

Responsible for risks

Production lead, triade, team

Cross-team project manager,
leading team

Identified gaps

For this context, informal risk
management has been assessed as
sufficient.

1. Clear, coordinated
responsibility for risks is often
lacking

2. Clear, coordinated
responsibility for the
implementation of measures is
often lacking

3. Escalation instance for risks is
unclear

4. Transparency with regard to
risks from the perspective of the
teams is often not given

5. Information flow at the project
intersection continuous product
development requires
optimization

Measures

Best practices workshop on
internal team risks

a) Optimization interface
cross-team project - continuous
product development (improves
Gaps 1,2,4,5)

Optimization tooling for project
management, and especially for
risk management (improves
Gaps 1,2,4,5)

Optimization project setup and
management (improves Gaps 1,
2,3)

b)

C

~

However, the situation is different for the context of cross-team project. Some chal-
lenges could be identified (see Table 2), which can be summarized under the topics of
responsibilities and transparency. During the focus group, appropriate measures were
developed with which the identified challenges can be overcome. These are activities
that are often associated with project management (see Table 2).



138 E.-M. Schon et al.

4.3 Interface Cross-Team Project and Continuous Product Development

The optimization of the interface between cross-team project and continuous product
development was carried out by strengthening the information flow in and out direction of
the participating teams during the project duration. In detail, a regular communication
of the status of individual risks was introduced, transparency in respect of upcoming
project decisions (e.g. on risks), and furthermore, a close involvement of the experts
from the participating teams in the technical discussions as well as risk assessment.

Moreover, biweekly program exchange meetings with the management were intro-
duced. These meetings were about management support to exchange information on
risks and not about reporting the status.

4.4 Tooling for Risk Management

One of the measures to optimize the context cross-team project was the development
of a suitable tool. The requirements for the tool were prioritized by the voting of the
stakeholders (see 3.2). The following important requirements were identified: easy han-
dling; filtering; transparency for all; exportability for a report; no mandatory fields;
standardization using a template, whereby the principle less is more should be followed.

Then, three possible variants were tested. One based on Excel (Microsoft), one based
on Confluence (Atlassian), and a search for suitable plugins on the market. After the
evaluation by the stakeholders, the decision to go in for the Confluence-based solution
was taken.

The tool is designed as follows: each project page in Confluence has its own subpage
for risks. A button is used to capture new risks using a page template. The template
includes the fields: topic, category, risk description, date of creation, date of update,
probability of occurrence, impact, overall criticality score, measures, and person in
charge. Thus, each risk is saved as an editable page. On a portfolio page there is a
total cross-team projects risk register, which is automatically fed from the individual
risks of the projects. This overall risk register can also be filtered, sorted and exported.
Furthermore, the tool enables the aggregation of individual risks across several scaling
levels (see Fig. 2) without the same risk being documented several times.

4.5 Project Setup and Management

The optimization project setup and management included topics such as the explicit
clarification of project responsibilities at the start of a cross-team project, clear commu-
nication of project responsibilities to stakeholders and ongoing support from program
management.

For the project setup, an official kick-off meeting with the participating teams was
introduced. In this kick-off meeting, information on the motivation of the project, the
project goals, the control variables (e.g. timing, budget), the risk responsibilities, and
decision-making groups were clarified.

In addition, project managers were regularly invited to the PMO. Participants in the
PMO were the management circle and the organization team of the Level 2 Kanban
board. In this meeting, the risk register of a cross-team project was discussed with the



Improving Risk Management in a Scaled Agile Environment 139

aim of identifying and clarifying the need for decisions. The clarification of the need for
decisions may lead to a further discussion of a specific risk within the program exchange
meeting with the senior management.

5 Discussion and Limitations

Our results show that there is a need for action at cross-team projects, as we were
able to identify some gaps here. The cross-team project requires more formal practices
because several teams are involved, and it is a challenge to create transparency across
team boundaries. The measures taken to improve risk management in the context of
cross-team project (see Table 2) are often found as best practices in traditional project
management. As a result, we can conclude that the pure application of agile methods and
practices is not sufficient for a scaled agile environment. This is when hybrid process
models come into play. Hybrid process models combine different methods and practices
and are made up of natural process evolution, which is mainly driven by experience,
learning, and pragmatism [16].

In summary, we achieved a proactive, conscious handling of risks because of the iter-
ative actions in which the employees were actively involved. Moreover, we established
a common understanding of risk management among the participants of the study. The
main achievements for the company can be summarized as follows: support in opera-
tional risk management by means of a common tooling, standardized approach for risk
management increases transparency, especially in the context of cross-team projects and
assistance for the training of new employees.

Nevertheless, this study has some limitations. First, our findings are based on a single
case study. So, the results might not be applicable to other cases on account of the specific
context. Second, there might be a bias in the data collection procedure caused by missing
audio or video recordings. However, we were able to mitigate this bias since we played
back the summarized results of the interviews to the interview partners in a focus group.
And third, the designed process for risk management could only be kept up by giving
relevance to the autonomous teams because they decide whether to use it or not. This
relevance could be given by management feedback.

6 Conclusion

This paper presents findings from a case study conducted in a scaled agile environment
in the ecommerce sector. The aim of our study was to improve the risk management
within a company as well as improve the overall organizational design. In light of this,
we examined two contexts, on the one hand, the context of continuous product devel-
opment and, on the other, the context of cross-team project. We found that implicit risk
management is sufficient for the former context, whereas a more formal risk manage-
ment is required for the latter. To this end, we have worked out measures for the context
of cross-team project, which address the identified challenges. In particular, the mea-
sures aim to improve the interface between cross-team projects and continuous product
development, the tooling for project management, and especially for risk management
across several scaling levels, as well as project setup and management.



140 E.-M. Schon et al.

Currently, we are working on an evaluation concerning the effectiveness of the
applied measures. Therefore, we are planning several interviews with the participants of
the study.

References

1. Schwaber, K., Sutherland, J.: The scrum guide (2017). https://doi.org/10.1053/j.jrn.2009.
08.012

2. Anderson, D.J.: Kanban - Successful Evolutionary Change for your Technology Business.
Blue Hole Press, Sequim (2010)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(2000)

4. Beck, K., et al.: Manifesto for agile software development. http://www.agilemanifesto.org/

5. Snowden, D.J., Boone, M.E.: A leader’s framework for decision making. Harv. Bus. Rev. 85,
68-76 (2007)

6. Schon, E.-M., Winter, D., Escalona, M.J., Thomaschewski, J.: Key challenges in agile require-
ments engineering. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol.
283, pp. 37-51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_3

7. VersionOne Inc.: 13th annual state of agile report (2019)

8. Dingsoeyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier. IEEE
Softw. 36, 30-38 (2019). https://doi.org/10.1109/MS.2018.2884884

9. Doénmez, D., Grote, G.: Two sides of the same coin — how agile software development teams
approach uncertainty as threats and opportunities. Inf. Softw. Technol. 93, 94-111 (2018).
https://doi.org/10.1016/].infsof.2017.08.015

10. Shrivastava, S.V., Rathod, U.: Categorization of risk factors for distributed agile projects. Inf.
Softw. Technol. 58, 373-387 (2015). https://doi.org/10.1016/j.infsof.2014.07.007

11. Shrivastava, S.V., Rathod, U.: A risk management framework for distributed agile projects.
Inf. Softw. Technol. 85, 1-15 (2017). https://doi.org/10.1016/j.infsof.2016.12.005

12. Elbanna, A., Sarker, S.: The risks of agile software development: learning from adopters.
IEEE Softw. 33, 72-79 (2016). https://doi.org/10.1109/MS.2015.150

13. Tavares, B.G., Sanches da Silva, C.E., De Souza, A.D.: Practices to improve risk management
in agile projects. Int. J. Softw. Eng. Knowl. Eng. 29, 1-19 (2018). https://doi.org/10.1142/
S50218194019500165

14. Buganovi, K., Simitkovd, J.: Risk management in traditional and agile project management.
Transp. Res. Procedia 40, 986-993 (2019). https://doi.org/10.1016/j.trpro.2019.07.138

15. Runeson, P., Host, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14, 131-164 (2009). https://doi.org/10.1007/s10664-008-
9102-8

16. Kuhrmann, M., et al.: Hybrid software and system development in practice: waterfall, scrum,
and beyond. In: Proceedings of the 2017 International Conference on Software and System
Process - ICSSP 2017, pp. 30-39. ACM Press, New York (2017). https://doi.org/10.1145/308
4100.3084104


https://doi.org/10.1053/j.jrn.2009.08.012
http://www.agilemanifesto.org/
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1109/MS.2018.2884884
https://doi.org/10.1016/j.infsof.2017.08.015
https://doi.org/10.1016/j.infsof.2014.07.007
https://doi.org/10.1016/j.infsof.2016.12.005
https://doi.org/10.1109/MS.2015.150
https://doi.org/10.1142/S0218194019500165
https://doi.org/10.1016/j.trpro.2019.07.138
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/3084100.3084104

Improving Risk Management in a Scaled Agile Environment 141

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

The Business of Agile



®

Check for
updates

“When in Rome, Do as the Romans Do”’:
Cultural Barriers to Being Agile in Distributed
Teams

Darja Smite!2®D Javier Gonzalez-Huerta!, and Nils Brede Moe!2

1 Blekinge Institute of Technology, Karlskrona, Sweden
{darja.smite, javier.gonzalez-huerta,nils.brede.moe}@bth.se
2 SINTEF ICT, Trondheim, Norway

Abstract. With the growing interest of adopting agile methods in offshored pro-
cess, many companies realized that the use of agile methods and practices in
companies located outside the location of early adopters of agile methods may
be challenging. India, the main destination of offshoring contracts, have received
particular attention, due to the big cultural differences. Critical analysis of related
studies suggests that impeding behaviors are mostly rooted in the hierarchical cul-
ture of Indian organizations and related management behavior of command-and-
control. But what happens in distributed projects with a more empowering onshore
management? In this paper, we present the findings from a multiple-case study of
DevOps teams with members from a mature agile company located in Sweden and
amore hierarchical offshore vendor from India. Based on two focus groups we list
culturally different behaviors of offshore engineers that were reported to impede
agile ways of working. Furthermore, we report the findings from surveying 36
offshore team members from five DevOps teams regarding their likely behavior
in situations reported to be problematic. Our findings confirm a number of previ-
ously reported behaviors rooted in cultural differences that impede the adoption
of agile ways of working when collaborating with offshore engineers. At the same
time, our survey results suggest that among the five surveyed teams there were
teams that succeeded with the cultural integration of the offshore team members.
Finally, our findings demonstrate the importance of cultural training especially
when onboarding new team members.

Keywords: Culture - Cultural differences - Agile - Distributed development -
Distributed agile teams

1 Introduction

The times when software could be designed by a single co-located agile team, are
long gone and many agile software development environments have become highly dis-
tributed. Software companies often collaborate with engineers from multiple sites of the
same company or from sub-contractors. Thus, agile teams might be spread over several
time zones and geographic locations, implying that different national and organizational

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 145-161, 2020.
https://doi.org/10.1007/978-3-030-49392-9_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_10

146 D. Smite et al.

cultures are represented [25]. Such setups increase the complexity of the software devel-
opment work and challenges emerge [10]. One example of such challenges is when more
hierarchical organizations from certain Asian countries (e.g., India or China) collabo-
rate with self-managing teams from the Nordic countries. Self-managing agile teams
are those given significant authority and responsibility for many aspects of their work,
such as planning, scheduling and assigning tasks to members, and making decisions
with economic consequences [19]. An interesting question is what happens when teams
are set up with a mix of representatives from a mature agile organization and a more
hierarchical organization?

The first challenges emerge when crossing organizational boundaries. Several
researchers have emphasized the importance of cultural compatibility or fit between
the organizational culture and the software development method in use [6, 11], and
that companies are likely to encounter difficulties when having incompatibilities. What
makes it challenging to reach compatibility is the fact that even in agile organizations
you will find several conflicting sub-cultures [13, 20] e.g. when the culture at the agile
team level is seen as a threat because it conflicted with existing and established habits
of the management. This means that team is a relevant context to study culture.

The next big challenges emerge when crossing national boundaries. Collaboration
with Asian vendors is one big trend in many Western companies. Many of these compa-
nies report challenges when introducing agile in projects involving offshore engineers,
rooted in the cultural differences [1, 5, 10, 15, 27, 30]. In particular, companies from the
main offshore destination, India, have focused on rigid process improvement programs
as ameans of demonstrating organizational capabilities, and therefore often exhibit heav-
ily plan-based culture with corresponding organizational structures and processes [27].
Whether and how to achieve combability between the national culture and agile devel-
opment methods when creating virtual teams involving team-members with radically
different cultural backgrounds has thus become an important research topic. However,
some researchers warn that the major differences in norms and values cannot be harmo-
nized, since they derive from deep-seated differences in cultural background, education,
and working life [14]. The need to understand how to succeed with the adoption of agile
ways of working in globally distributed teams with members from an Indian vendor,
motivated us to explore what are the specific cultural barriers, what resulting behaviors
impede agility, and whether these behaviors prevail among offshore engineers working
in distributed agile teams. Our empirical study therefore addresses the following research
questions:

RQ1: What are the cultural barriers impeding agile ways of working in distributed teams
with members from a hierarchical culture?
RQ2: What can agile teams do to integrate the offshore members?

In this paper, we report our results from an empirical study of a Swedish com-
pany working with offshore engineers from an outsourcing vendor in India. The rest
of the paper is organized as follows. Section 2 summarizes the links between cultural
differences and the behavior of Asian software engineers, as well as the role of cul-
tural differences when introducing agile ways of working in offshore projects. Section 3
introduces our research methodology and the case company. The results of our study are



“When in Rome, Do as the Romans Do” 147

presented in Sect. 4, followed by a discussion in Sect. 5. Section 6 concludes the paper
with a summary of the findings and implications for practice and further research.

2 Background and Related Work

Culture is related to the way we give logic to the world and begins at birth with gestures,
words, tone of voice, noises, colors, smells, and body contact we experience [18]. Our
culture is what is familiar, recognizable, habitual, it is “what goes without saying”,
“what is normal”. Yet, culture is a multifaceted concept, and can be attributed to a
nation, an organization, a group or even an individual, because it is shaped by one’s
social environment [9]. Therefore, culture is a sensitive subject and not the depiction
of wooden stereotypes [3]. Yet, common characteristics may exist that distinguish one
culture from another [3]. In our work, we focus on the impact of the national culture and
the organizational culture on the ways of working.

National cultures and cultural differences have been studied in-depth by several
social scientists (e.g. [9] and [7] to name a few). These studies resulted in several over-
lapping cultural characteristics that are common for representatives of a particular nation.
National culture may determine preferred leadership styles and decision-making pro-
cesses, perceptions of authorities, attitude towards time, need for formalization, preferred
communication and interaction styles, business etiquette and motivation tools [9]. Simi-
larly to organizational incompatibilities with the method in use [6, 11], incompatibilities
in the national backgrounds and the differences in the ways of working can prove prob-
lematic [10, 14]. In fact, the larger the degree of difference in organizations and national
cultures, the larger the cultural distance between the parties involved [4]. In the follow-
ing, we first explain what characterizes agile ways of working and what organizational
culture is conducive for successful adoption of agile methodology, and then summarize
research studies related to the challenges of introducing agile ways of working in Asia,
relevant for our empirical study.

2.1 Agile Ways of Working and Organizational Culture

Agile ways of working stem from a group of methods united by a common philosophy,
values, and principles. It emphasizes teamwork and heavily relies on the ability of a
software team to self-manage [8, 19]. The principles of self-management and autonomy,
central to agile ways of working, put certain demand on the organizational culture, team
composition and behavioural norms [8, 21, 28]. Morgan [23] emphasises the importance
of teams’ ability to engage in self-learning and drive continuous improvement, and
ability to act upon minimum critical specification. van Solingen et al. [26] argue that
the prerequisites for improvement and learning are openness and the ability to discuss
the underlying problems. Based on two large surveys of agile teams, Williams captures
practices essential for teams to be considered agile being related to their ability to
satisfy the customer through early, continuous and frequent delivery of valuable, working
software; the prerequisite for which is, among others, staffing projects with motivated
individuals who are given the needed resources and authority to get their job done [31].



148 D. Smite et al.

A number of studies investigated the relationship between organizational culture and
the use of agile methods [8, 12, 13, 29]. Based on a multi-case study of nine projects
Strode et al. [29] found that specific organizational culture factors correlate with effec-
tive use of an agile method. Their findings suggest that an organization is more likely
to be successful if the organization values feedback and learning; social interaction in
the organization is trustful, collaborative, and competent; the project manager acts as
a facilitator; the management style is that of leadership and collaboration; the organi-
zation values teamwork is flexible and participative and encourages social interaction;
the organization enables empowerment of people; the organization is results oriented;
leadership in the organization is entrepreneurial, innovative, and risk taking; and the
organization is based on loyalty and mutual trust and commitment [29]. Similar findings
emerged from studying 58 agile practitioners from 23 organizations in New Zealand
and India [8]. Hoda et al. found that the prerequisite for self-organizing agile teams
to establish and flourish is senior management support, in terms of providing freedom
and establishing an organizational culture of trust. They also suggest that an organiza-
tion with a strict hierarchical structure is not conducive to self-organizing agile teams,
because the hierarchy enforces a lack of openness marked by restricted and indirect
lines of communication and feedback, which in turn leads to an environment of fear [8].
Based on a multi-case study, Kautz et al. [13] found that agile development thrives in
different organizational cultures, even in hierarchical ones, as long as the 4 core values
are present to a significant extent. Furthermore, they argue that while organizational
culture has an impact on the way agile development is enacted, in practice it is often
the method which is adjusted to the organization. Similarly, livari et al. argue that the
relationship between an organizational culture and agile ways of working is dynamic
and therefore will continuously evolve [12]. This means that time perspective matters
and studies on the compatibility between the culture and agile ways of working shall
take the dynamic nature of this relationship into account.

Another reason to look at the organizational culture from a time perspective is the
staff changes. When adding new people to an already established agile team, it is essential
to support the new team members in adapting to the existing teams culture and ways
of working, which is especially difficult in virtual setups. In their study of onboarding
Portuguese developers into existing Norwegian agile teams [22], Moe et al. conclude
that the most important success factor is finding people that matched the culture of the
existing teams. Therefore, during an onboarding process, all interviews and visits need
to focus on communicating the values and culture and on giving insight into the existing
organization’s norms.

2.2 Agile Adoption in Asian Countries

Since, national culture is said to have significant influence on the organizational culture
[9] and organizational culture may impact the use and success of agile ways of working
[13, 29], there is interest in understanding the use of agile methods and practices in
companies located outside the locations of early adopters of agile methods. In particular,
researchers and practitioners have wondered about the abilities of the companies and
engineers from the Asian region, the primary recipients of offshoring contracts, to adopt
the agile ways of working, which are so distinct to their national culture.



“When in Rome, Do as the Romans Do” 149

To address these questions, a number of studies sought evidence of successful use
of agile methods in offshored projects [10, 25]. Some researchers infer the successful
adoption from the large number of practices reported as being followed [2, 32]. However,
the validity of these studies as well as the research approach are questionable, because
high level of commitment to the use of agile practices can be explained by the readiness
to accept the established rules in hierarchical (i.e., high power distance) cultures, as
found, for example, in a study of agile adoption in Malaysia [1]. Other research studies
tried to improve the understanding of what specifically impedes the adoption of agile
ways of working in Asian cultures [1, 5, 8, 14, 15, 30] and how to succeed [8, 25]. In
Table 1, we summarize a list of impeding behaviors reported on the managerial and
engineering levels in related studies.

Table 1. Culturally distinct behaviors impeding agile ways of working.

Level Impeding behavior References
Management Command-and-control mindset, reinforced [1,5, 8,10, 14, 30]
behavior deference to superiors

Leadership style discouraging team members from | [5]
exposing problems

Leadership style discouraging from proposing [5]
alternatives to perceived directives from superiors

Engineers’ behavior | Willingness to say yes to most requests in deference | [1, 5, 30]
to superiors, reluctance to warn about non-feasible

deadlines
Reluctance to expose problems [1,5, 8]
Lack of commitment to self-learning, reliance on [1, 30]

top-down improvements

Reluctance to engage in constructive disagreements | [8, 14, 15]
and challenging discussions or voicing criticism

Reluctance to propose alternatives to perceived [5, 8]
directives from superiors

The cited studies cover different countries within the Asian region, including India
[5, 8,27, 30], Malaysia and Singapore [1] and Asia Pacific in general [15], and are either
based on interviews or own experiences.

A closer look at behaviors of engineers in India and neighboring countries reveals
that most if not all impeding behaviors are likely to be caused by the hierarchical culture
of the organizations and related management behavior, as suggested in related research
[8, 29]. For example, Ayed et al. [1] report that Malaysian and Singapore engineers
lacked the freedom to decide about their ways of working and therefore did not see
the point in self-learning. But what if the hierarchical culture of command-and-control
highlighted in numerous studies as poisonous to the agile ways of working [1, 5, 10, 14,
15, 30] would be replaced with the more empowering onshore management; would the



150 D. Smite et al.

offshore engineers working in mixed onshore-offshore teams be able to adopt the agile
ways of working? Or would the less hierarchical Western companies fail to ignite the
agile culture in their offshore collaborations? The answers to these questions are of high
importance for shaping the understanding of the compatibility of agile ways of working
with the use of offshoring.

3 Research Methodology

To answer our research questions, we conducted an exploratory case study [24]. We
executed our study in real world setting and studied collaboration between two companies
(see Sect. 3.1). Our study is a holistic multiple-case study, where the context is the
offshore collaboration between a mature agile company from Sweden and a hierarchical
consultancy company from India; each case is a distributed agile team (five in our study)
and individual behavior of the team members as the unit of analysis [24]. Finally, our
data collection and analysis were divided into two steps (see Sect. 3.2).

3.1 Empirical Background

The context of our study is a collaboration between an outsourcer/customer company
from Sweden working in the telecommunication industry and an outsourcing vendor/a
consultancy company from India. For confidentiality reasons we are prohibited to dis-
close the names of either of the companies. Our investigation targeted five distributed
agile teams composed of team members from both the Swedish company and the offshore
vendor from India. The selection of the teams was done with the help of the companies
and represented all important business areas.

The studied teams were set up as DevOps teams consisting of a few smaller mixed
Dev and Ops teams working accordingly in the development stream or the opera-
tion stream with supporting roles around. Each smaller team was cross-functional and
involved developers, testers, a System lead, a Team lead and a Product owner (see the
structure in Fig. 1 and profiles of the studied DevOps in Table 2).

DevOps teams followed agile principles and ways of working with iterative develop-
ment (Scrum or Kanban, decided by each team individually), daily stand ups, and team
retrospectives as the primary rituals. The offshore members of the teams were expected
to follow the same agile principles and philosophy as the contracting organization. This
is why cultural incompatibility across locations was seen as a threat.

3.2 Data Collection and Analysis

A mixed approach was employed to study the impact of cultural differences on the
collaboration between the Swedish customer and the Indian outsourcing vendor. Data
collection was done in several steps including a quantitative data collection approach
when exploring the personally experienced misunderstandings and relevant behaviors
impeding collaboration, and a more qualitative approach when checking the occurrence
of impeding behaviors in five distributed DevOps teams, as visualized in Fig. 2 and
described in the following sub-sections.



“When in Rome, Do as the Romans Do”

151

Dev Development Stream

N
’ \Vj N

4 oo ==
4 System &%) wmm
1 Y mmm

ooz L d
A @— e Developers
™

| - E] S
\ Team Lead (=] ; ——
\ —
\ .
N mm Testers
N .. .,
S Product e

~ _Owner _-

Ops Operations Stream

\\
& =
e
|‘ System Developers ‘l
| Manager |
\ 1
R Topy o] /

N Q&ﬁ* H—
=
— ,

AN Ops Lead
N Testers 7

. " . Test )
Solution Agile Project Solution Agile PMO oI Operations | Release
Architect Managers Architect d Management Lead Management
Test Strategy and
System / Solution / Acceptance Testing (QA) Contisr?:tz)‘tllasrlemcemr/ation Test Automation
9 Performance

l:‘ Shared team or role across DevOps teams

l:‘ Functions shared across DevOps teams

Fig. 1. DevOps team structure

Table 2. Profile of the studied teams.

No of sites | Total no of | No of Participants Offshore
members participants | gy <hore | Offshore | member roles
DevOps 1 |2 18 18 11 7 Dev. (3), Test.
(2), Architect,
Op. lead
DevOps2 |2 22 20 14 6 Developers (5),
Team Lead
DevOps3 |3 28 22 12 10 Dev. (6),
Testers (2),
Team leads (2)
DevOps 4 |2 44 20 13 7 Developers (6),
Operations
Lead
DevOps 5 |2 21 16 10 6 Consultant,
Developers (4),
Test lead
TOTAL 133 96 60 36

Group Interviews to Elicit Misunderstandings.

First, we conducted separate homo-

geneous group interviews with representatives from Sweden and from India to elicit the
main sources of misunderstandings that impede ways of working in the collaboration.
Eight representatives participated in the session with the Swedish representatives (N =
8). Two experienced managers participated in the electronically mediated session with
the Indian representatives (N = 2). The group interviews were conducted in May 2017,



152 D. Smite et al.

—@ 21.06.2017 —013.10.2017
Feedback session Workshop DevOps 1
with Swedes
31.05.2017 22.06.2017 23.10.2017 09.02.2018
Group interview Feedback session Workshop DevOps 2 Workshop DevOps 4
with Swedes with Indians
30.05.2017 09.11.2017 19.03.2018
Group interview Workshop DevOps 3 Workshop DevOps 5

with Indians

Personally Relevant behaviors Occurrence of impeding behaviors in
experienced impeding five distributed DevOps teams based on
misunderstandings collaboration self-reported likely behavior

Fig. 2. Data collection activities and resulting data on the timeline

ran in English, and moderated by one of the researchers, while another researcher took
detailed notes. Both sessions lasted approx. two hours and followed the same agenda —
after getting to know each other and presenting the objectives, the participants were given
time to connect to a web-based survey service called Mentimeter via mobile phones or
computers and report personal experiences related to cultural misunderstandings. The
survey form contained just one open question and the participants were encouraged to
submit as many items as possible. The submitted items were then brought up one by one
and discussed with all participants in the session. The situations in which certain mis-
understandings occur were sought and every participant could add their own reflections
and bring up new ideas, which were noted down as session notes.

The generated items and the recorded notes were analyzed in iterations. First, we
aggregated elicited items in one list of misunderstandings grouped by similarity. This list
contained seven larger categories related to cultural differences and their impacts. Then
we revisited each category one by one, read through the session notes and formulated
items in a particular form: As a <role and/or site representative> it is confusing for me
when <role and/or site representative> <behavior> (when/in <situation> ).

Typical Impeding Behaviors Prioritized During Feedback Sessions. The identified
26 different confusing behaviors served as the base for identifying situations, which
were reported as sources of misunderstandings. To identify the most relevant impeding
behaviors, we discussed our results in feedback sessions with larger groups of onshore
and offshore representatives, conducted in June 2017. We discussed the identified prob-
lematic situations with expected and unwanted behavioral options in feedback sessions
involving homogeneous groups of Swedish participants (N = 12) and Indian partici-
pants (N = 4), and refined our results based on the comments received. We also elicited
the responses of the Swedish participants regarding the occurrence of the impeding
behaviors on a scale: Happens, Used to Happen, Never Happens. This was not done
in the session with Indian side representatives, because the respondents were too few
and included a manager, who could have influenced the results. In this paper, we report
a selection of behaviors that are classified as hindrances to the agile ways of working
(see Sect. 4.1). These are based on the behaviors reported by both Indian and Swedish
participants with the occurrence scores from the Swedish session. The behaviors that



“When in Rome, Do as the Romans Do” 153

are not included in this paper included those related to the estimation precision, attitude
towards time (reporting vacations, coming to meetings on time, extending work hours),
communication (switching to local language), and a few variations of the behaviors.

Occurrence of Impeding Behaviors in Surveyed DevOps Teams. We ran five work-
shops with DevOps teams (mixing onshore and offshore participants; N = 96) to discuss
cultural differences and test the occurrence of impeding behaviors in each team (See the
profiles in Table 2). The workshops were held in the fall of 2017 and spring of 2018. Dur-
ing the session we first queried the participants about their likely behavior in the given
situations. Then each situation, reported behaviors and reasons for the likely behavior
based on cultural studies [9] were discussed. At the end of each workshop, the areas
of improvement for the participating team were identified. In this paper, we report and
discuss the responses of offshore participants (N = 36) related to the behaviors impeding
or enabling agile ways of working.

3.3 Limitations and Threats to Validity

In this subsection, we discuss the limitations and issues that might threaten the validity
of our results. Given the qualitative nature of our study, in the following we discuss the
validity, reliability and generalizability threats following the guidelines by Leung [17].

Validity refers to the appropriateness of the method. We designed the empirical study
in a two-staged fashion, aiming at improving objectivity when formulating and selecting
the situations and impeding behaviors. We also used an anonymized data collection tool
and obfuscated the results to ensure anonymity of the respondents, to eliminate the
unwillingness to report personal confusions.

Reliability in qualitative research refers to the replicability of the results. A margin
of variability in results is accepted when dealing with qualitative research [17] or mixed
methods, since the subjectivity of the researcher is embedded in the roots of the analysis.
The main threat is then related to consistency. To mitigate this threat, we let the partic-
ipants report their responses in a data collection tool, by being systematic when taking
notes and documenting the discussions during the sessions, and by keeping the quota-
tions from the participants as exact as possible. Furthermore, we conducted feedback
sessions to validate our interpretation of the impeding behaviors and situations.

Possible threats to the validity and reliability of our results are related to the reluc-
tance of offshore participants to express their opinion in front of managers or onshore
peers, as well as reluctance to talk about compromising issues. To alleviate these threats,
we separated the Indian and Swedish participants in the initial group interviews and
feedback sessions to be able to talk more openly. In the mixed workshop sessions,
we explained the importance of truthful responses and asked onshore team leads to
encourage openness. We also used a survey form that allowed participants to provide
their responses anonymously, which remained untraceable to individuals even during
the discussions. The reported problematic behavior in the survey, confirming comments
received from the onshore participants and reflections voiced by more experienced off-
shore participants (in other words triangulation of the data sources) make us believe that
we have elicited as honest and open responses as possible.



154 D. Smite et al.

Data triangulation is the core principle of case study research [24]. To enhance the
validity and reliability of our results, the individual responses elicited during the group
interviews were first discussed in the respective groups and compared across the onshore
and offshore groups. We then elicited quantitative data from larger groups of participants
(survey responses) to minimize the bias towards selected individuals. The quantitative
data elicited through the survey was further triangulated with the qualitative data (notes)
from the discussions held during the workshops.

Generalizability of the conclusions drawn from our results are of course limited to
the studied context. However, our results disprove an existing view that cultural barriers
are likely to remain since the major differences in norms and values cannot be harmonized
[14]. We believe that it is fair to assume that the gradual changes in behavior that we
observed as a result of the gained experience with working in a mixed environment may
also happen in similar contexts in other organizations.

4 Results

In this section, we first list the culturally distinct behaviors that were reported to cause
misunderstandings and impede the agile ways of working in distributed teams. Then we
report on the occurrence of the impeding behavior from surveying 36 offshore members
from a more hierarchical organization integrated into five DevOps teams.

4.1 Behavior Impeding Agile Ways of Working

Based on the interviews, we identified 19 sources of misunderstandings reported by
the Swedish participants and 14 sources of misunderstandings reported by the Indian
participants. Notably, both sides reported what was confusing in the behavior of their
counterparts as well as the own behavior that have led to misunderstandings or confusion.
Our further analysis of the situations in which differences in behavior were seen as
barriers for collaboration led to an aggregated list of 26 behaviors, which was triangulated
with related literature. Of these, 12 behaviors were prioritized as frequently occurring
and important to discuss as determined in the feedback sessions. In this paper, we provide
an analysis of six of these behaviors that can be classified as impediments to agile ways
of working (see Table 3).

The six reported behaviors impeding agile ways of working surface in the daily
meetings, task allocation and content discussions, and team retrospectives; and appeared
all but one as common sources of misunderstandings between the offshore and onshore
members (see the column Happens in Table 3). Evidently, the most typical impediment
is willingness to say yes to most requests in deference to superiors and reluctance to
warn about non-feasible deadlines. Other impeding behaviors had varying frequency of
occurrence. Some respondents indicated that although the impeding behaviors occurred
in the past (“Used to happen” in Table 3), social integration of the Indian members led
to the assimilation of the established ways of working and put an end to behavioral
differences. This is why, in the next step we sought to further understand how common
the impeding behaviors are in different teams, and what stimulates cultural integration.



“When in Rome, Do as the Romans Do” 155

Table 3. Behavior impeding agile ways of working and the frequency of occurrence reported by
the Swedish representatives (N = 12).

Happens Usedto  Never Don’t
happen happened  know

#1 Willingness to say yes to most requests in deference to - 100%
superiors, reluctancy to warn about non-feasible deadlines

#2 Seeking immediate manager’s approval for team tasks in - 75% 17% 25%
deference to local superiors

#3 Reluctancy to reveal a lack of understanding and ask - 58% 33% I 8%
questions / :

#4 Reluctancy to expose problems at earliest convenience - 92% 8%

#5 Reluctancy to discuss failure 8% - 92%

W

#6 Reluctancy to voice criticism or propose alternatives to - 67% 8% 25%

perceived directives from superiors

4.2 Behavior in Five Distributed Teams

Table 4 summarizes our results from surveying offshore members from five distributed
DevOps teams regarding their likely behavior in six situations (impeding behaviors
are emphasized in red color). Our results suggest that accepting unfeasible tasks in
deference to superiors (#1), seeking immediate manager’s approval for tasks (#2) and
reluctance to confess about lagging behind schedule (#4) are behaviors experienced in
all five distributed teams, while confusing behavior in situations #5 and #6 are not that
common. It is also evidently from the results that DevOps 1 and DevOps 5 appear quite
successful with the cultural integration of their Indian members, while DevOps 2, 3 and
4 are challenged. This is confirmed by a more detailed analysis, which reveals that the
most common respondents of impeding behavior are the recently onboarded members.
In the following, we further detail our findings from analyzing survey responses and
notes capturing the discussions the team members held during the sessions.

Willingness to Say Yes to Most Requests in Deference to Superiors, reluctance
to warn about non-feasible deadlines. This impeding behavior is one of the most
common behaviors among our respondents, with eight members in DevOps 3 reporting
to accept unfeasible tasks from superiors. As the technical product owner (TPO) from
DevOps 3 reveals: “We see [this impeding behavior] a lot, it does not just put us in a
risk situation, but also other TPOs and stakeholders”. The offshore member from Team
3 explained that it is difficult for them to say “No” and therefore they are likely to use
hinting words as “I will do my best”, in the hope that it will be interpreted correctly.
Yet, Swedes put no value on what is not said. Thus, team leads suggested that coaching
offshore members to be direct and open was important. They explained that for Swedish
team members, a “Yes” means “I understand”, “I agree”, “I accept”, “I approve”.

Seeking Immediate Manager’s Approval for Team Tasks in Deference to Local
Superiors. This challenge was seen as a fact of life, since Indian team members were
a part of the consultancy company and confirmed to local rules and regulations. In
fact, many team leaders and product owners established direct communication channels



D. Smite et al.

156

%0 %0 wot [} %L1 sagueyod ss2001d 2sodoid 10 WSIANLID IOT0A 0 JULIIN[Y [X]

%t %LS %08 %L1 v sa8ueyo asodoid [A

%L1 %0 %0 %c€ N WISIONILIO 90I0A [A]

%08 %t %0t vgs sa8ueyd ssa001d asodord pue wWsIONLIO IOI0A [A]
SI0L19dNS WO} SIANIIIIP PIAIIIA 0) saAneUId) B 9s0d0ad 10 WSINLID 3J10A 0] AOUBIIN[IY | SIANIIASO1JII WL, :9#

%0 %0 ssot i %L1 %0 swarqold dn Sutiq 03 JuelON[AY X

%EE %0 %0 %0 %0 puajep 01 A1 uay) pue swo[qoid dn Furiq s1oyjo [HUN JIBM [X]

%L9 %001 %06 s %001 way) ssnosip pue swa[qoid dn Sunig A
daIn[Ie} sSNISIP 0) ADUBIINIY | SIANIIASOI)II WL, :SH#

%L1 %LS %0€ %pl swa[qold asodxa 03 juelon|ayY [

%€8 %t %0L %L1 %98 J 90USIUAUOD SAILIBD 3} T& swaqold ay) Jnoqe urep [
DUIUIAUOD JSALILI Je suwd[qo.d 3sodxa 0) Loue)onjay | ssundduI A[re( p#

%0 %p1 %0 %0 %0 suondwnsse uodn 10 pue SUIPUL)SIOPUN-UOU [BIAI JOU 0( [X]

%0 %0 soz [ %08 %0 djoy 100d [800] 390s pue FUIPULISIOPUN-UOU [BIAI 10U 0( [X]

%001 %98 %08 %08 %001 Surylowos Juipuejsiopun jou usaym ‘A[30d11p suonsanb sy 7
suonsanb yse pue 3urpue)sIdpun Jo Yor[ € [B3A1 0) AOUBION[IY | SIIGUIDW WIEI) JIOYSUO PUE SIIUMO 1onpoad y)Im uondeIdu] ¢4

%0 %0 %0 % %1 J1oSBURW 9)RIPAWIWI O} WO} SOWOI JSB) A} [HUN JBM [X]

%L9 %0€E %EE %pl JoSeuew 9jeIpawuwI Ay} wolf [eaoidde ue jsanbay [x)
o%ce ol %0L %0S %IL A310911p YSB) Y} U0 SULNIOM LIRS [A]
SI0LI3ANS [BD0] 0) IIUIIIIIP UI SYSB) wied) J0j [eaoidde s JaSeueur d)eIpIw FUNRIIS | SYSE) 0) SUNIIWWO)) :TH#

vage ﬁ?J J %Ll varl SOUI[PEAP 9]qISLAJ-UOU UJIA SYSE} 3400V [x]

%08 %6z %0z %E8 %lL SYSB) 9FUBYOXS pPUB SAUI[PBIP J[QISLI-UOU JNOQR UIBA [A]
%L1 %6T %0 %0 %l SOUI[PBAP J[QISLJ-UOU O} JIWWIOD 0] ISNJY [A]
SOUI[PEop 9[qISBIJ-UOU JNOQE UIeM 0} AOUL)IN|AI ‘sI10L1adNs 0) SOUIIJAP Ul $)SANboI JSOUL 0) SOA AeS 0} SSOUIUI[[IAN | SHSE) 0) SUIPIUIWO)) :[#

(9=N) swedy,  (L=N) pwed], (0[=N) ¢wed],  (9=N) cwed],  (L=N) [ wey], SUONENJIS JUIIIPJIP Ul JOIABYDY

‘suondo Teroraeyeq Surpadur sauruI}op I0[09
pa1 oy} puefx] orym ‘suondo [eroraeyeq 9[qeidesor sounuIalep Al [oqUIAS "SUonen)Is USALS o) UL JOIABYSQ JOQUIOW WEd) 9I0YsJo pajtodar-Jjos *p Iqel,



“When in Rome, Do as the Romans Do” 157

with offshore managers. Therefore, this behavior was not seen as a major impediment.
However, the leader of DevOps 2 was recently employed and appeared to be unaware of
this difference in behavior, perhaps because a lack of onboarding into the cultural norms
of the team. This lack of awareness was seen as problematic since she did not know of
the importance of maintaining regular communication with the offshore managers.

Reluctance to Reveal a Lack of Understanding and Ask Questions. Few members
of DevOps 2 and 3 will hide a lack of understanding when discussing requirements
with the product owner, and instead ask peers for help, while one respondent in Team 4
will proceed based on the best assumptions. Members of DevOps 1 discussed that they
experienced this challenge especially among the new Indian members joining the team
and that exchange visits and personal acquittance between the product owner and the
offshore members helps. Interestingly, an offshore member from DevOps 3 said to be
surprised by the results and that from his observation, people are still reluctant to ask
questions. He explained: “...when we have discussion between sites, I can see that an
offshore person doesn’t understand, but doesn’t really say that. They might search for an
answer in the meantime and then come back with the answer, but probably won’t say it
in meeting”. Product owner in DevOps 3 suggested that one way to promote the wanted
behavior is to encourage questions; he explained: “I am used to say if you don’t have
questions, you don’t understand”. Another useful advice was the “Talk back™ approach,
which suggests not to ask Yes/No questions, but rather ask to summarize what was said
or agreed, or to explain the next steps one would do after the discussion.

Reluctance to Expose Problems at Earliest Convenience. Another common chal-
lenge in all five teams was the fear of revealing the fact that someone is lagging behind
during team daily meetings. As an offshore member of DevOps 1 explained: “Everyone
wants to do their best, they try everything before saying that they are late”. The reluctance
to expose problems was linked to the deference to managers in typically hierarchical
organizations and the “Why-management” style (A Why? Question follows when some-
one reveals a problem, forcing people to engage in uncomfortable explanations and thus
making them “lose face”). The meetings were said to differ in Sweden and in India. An
offshore member explained: “They have in mind that the boss is the one who decides
their salary”, while the team leads and managers in Sweden over time were accepted as
more accessible and thus raising problems became less frightening. Swedish members
emphasized that they prefer engineers to say what they think, and not what they think
managers want them to say.

Reluctance to Discuss Failure. This challenge was not reported as common in the stud-
ied teams, which was motivated by the positive atmosphere of the retrospective meetings
with the Swedish team leads. An offshore member of DevOps 1 further explained: “It
depends on who is in the meeting, sometimes we keep silent. It depends who is asking,
and who is running the meeting”. Therefore, keeping local offshore managers outside
the retrospectives was seen as an important learning.

Reluctance to Voice Criticism or Propose Alternatives to Perceived Directives From
Superiors. Similarly, challenging the established ways of working during the retrospec-
tives did not appear as acommon challenge. Many offshore members were likely to either
challenge the processes or propose improvements.



158 D. Smite et al.

5 Discussion

5.1 Cultural Barriers Impeding the Agile Ways of Working

In response to the first research question, we have identified several behaviors rooted
in the hierarchical forms of organization as impediments for agile ways of working,
which confirm previous research that highlight cultural barriers common to offshore
organizations. In particular, we found the reinforcement of deference to superiors [5, 8,
14] to be a common barrier for the studied teams. This in our case led to a willingness to
say yes to even unrealistic requests (similarly to [1, 5, 30]), reluctance to expose problems
(similarly to [1, 5, 8, 30]) and reluctance to reveal the lack of understanding and ask
questions to a superior. At the same time, our findings suggest that the empowering
culture and democratic leadership from Sweden encourage the trust and transparency-
based behavior among the offshore members. However, the behavioral transformations
take time and cannot be taken for granted. In the presence of hierarchical structures and
command-and-control leadership locally, cultural integration might take longer, or result
in that offshore team members are forced to assimilate different behaviors in parallel. In
fact, during one of the workshops an offshore team lead told us that offshore engineers
that move between customers might not be rewarded for what is a typical behavior in an
agile environment and need to revert to the behaviors typical to hierarchical cultures.

When contrasting our findings with the organizational culture factors that correlate
with effective use of an agile method [8, 29], we can say that the culture of the out-
sourcing vendor did not confirm with the highlighted values and management style.
The implication of this is that agile companies might be more likely to succeed with
offshoring through establishing their own sites; working with vendors that are already
used to agile values and ways of working or recruiting people that matched the culture
of the existing teams [22]. In particular, the companies may want to assess the vendors
management style, i.e., facilitation-leadership, collaboration-oriented management style
and focus on empowerment as crucial factors for adopting agility [29].

5.2 Cultural Integration of Offshore Members from a Non-agile Organization

Unlike researchers who suggest that cultural barriers are likely to remain since the
major differences in norms and values cannot be harmonized, as they derive from deep-
seated differences in cultural background, education, and working life [14], we found
that behavior seem to change when engineers are exposed to the culturally distinct
environment. Our findings demonstrate that Swedish members succeeded in integrating
members of a hierarchical culture and stimulating the changes in their behavior. Our
findings are in accordance with livari et al. that found that the relationship between an
organizational culture and agile ways of working is dynamic [12]. Our experience, how-
ever, shows that distributed teams are often left to experiment and adjust their ways of
working, since cultural awareness is often gained with experience. This has been noted
by Casey [3], who found that the importance of and requirement for cultural training
is often not recognized before a lot of time, effort and resources are wasted. We there-
fore recommend companies and distributed teams to run cross-cultural communication
courses to discuss the values that should govern behavior as also suggested in [16]. For



“When in Rome, Do as the Romans Do” 159

team leads and onshore managers struggling to overcome the same cultural barriers as
reported in this article, we can recommend the following:

e Establish good communication channels with local offshore managers and agree on
an efficient task allocation procedure;

e Schedule more frequent check-ins or updates;

e Create an environment of psychological safety and trust; set an example of taking
ownership for failures safely; show how teams can learn from mistakes, reward people
for making mistakes if/when they lead to valuable lessons;

e Seek out one-to-one conversations; encourage offshore members to be more direct,
use “Talk Back” approach to check the understanding;

e Encourage suggestions of better ways of working; do not criticize ideas; complement
people for valuable input; set an example of changes that led to action;

e Avoid offshore managers’ presence in team retrospectives and meetings where honest
and open input and feedback from offshore members is important.

6 Conclusions

Distributed collaboration is challenging [10]. In this paper, we explore one specific chal-
lenge, i.e., dealing with barriers rooted in the differences in national and organizational
cultures. Our results confirm the existing research that organizational and national cul-
tural barriers may impede collaboration in general and adoption of agile ways of working
in particular. However, our empirical findings from studying behavior of offshore mem-
bers from five mixed DevOps teams suggest that behavior does change over time, even
when integrating offshore engineers who are used to radically different hierarchical orga-
nizational culture into agile ways of working. In other words, Indian developers working
in agile projects, learned how to do as their more experienced agile team members from
Sweden do. Our study resulted in a list of recommendations for companies willing to
discuss cultural differences and foster cultural integration in offshore projects.

Acknowledgement. This research is funded by the GoLD project and the Swedish Knowledge
Foundation under the KK-Hog grant 2016/0191 and by the A-team project and the Research
council of Norway through grant 267704.

References

1. Ayed, H., Vanderose, B., Habra, N.: Agile cultural challenges in Europe and Asia: insights
from practitioners. In: IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pp. 153-162 (2017)

2. Baruah, N., Ashima, A.: A survey of the use of agile methodologies in different Indian Small
and Medium Scale Enterprises (SMEs). Int. J. Comput. Appl. 47(20), 38—44 (2012)

3. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global software
development. IEEE Softw. 18(2), 22-29 (2001)



160

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Smite et al.

Casey, V.: Leveraging or exploiting cultural difference? In: 2009 Fourth IEEE International
Conference on Global Software Engineering, pp. 8-17 (2009)

Fowler, M.: Using an agile software process with offshore development. https://www.martin
fowler.com/articles/agileOffshore.html

Gallivan, M., Srite, M.: Information technology and culture: Identifying fragmentary and
holistic perspectives of culture. Inf. Organ. 15(4), 295-338 (2005)

Hall, E.: The Silent Language. Doubleday, Garden City (1959)

Hoda, R., Noble, J., Marshall, S.: Supporting self-organizing agile teams. In: International
Conference on Agile Software Development, Madrid, Spain, pp. 73-87 (2011)

Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations. McGraw-Hill
Education, New York (2010)

Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchiiir, E.O.: Agile practices reduce distance
in global software development. Inf. Syst. Manag. 23(3), 7-18 (2006)

Tivari, J., livari, N.: The relationship between organizational culture and the deployment of
agile methods. In: Information and Software Technology, pp. 509-520. Elsevier (2011)
Iivari, N.: Culturally compatible usability work: an interpretive case study on the relationship
between usability work and its cultural context in software product development organizations.
J. Organ. End User Comput. 22(3), 40-65 (2010)

Kautz, K., Pedersen, C.F., Monrad, O.: Cultures of agility - agile software development in
practice. In: ACIS 2009 Proceedings - 20th Australasian Conference on Information Systems,
pp. 174-184 (2009)

Krishna, S., Sahay, S., Walsham, G.: Managing cross-cultural issues in global software out-
sourcing. In: Hirschheim, R., Heinzl, A., Dibbern, J. (eds.) Information Systems Outsourcing
(Second Edition): Enduring Themes. New Perspectives and Global Challenges, pp. 651-658.
Springer, Berlin Heidelberg (2006). https://doi.org/10.1007/978-3-540-34877-1_23

Lee, S., Yong, H.S.: Distributed agile: project management in a global environment. Empir.
Softw. Eng. 15(2), 204-217 (2010)

Lenberg, P., Feldt, R., Wallgren Tengberg, L.G.: Misaligned values in software engineering
organizations. J. Softw. Evol. Process. 31(3), e2148 (2019)

Leung, L.: Validity, reliability, and generalizability in qualitative research. J. Fam. Med. Prim.
care. 4(3), 324-327 (2015)

Van Maanen, J., Laurent, A.: The flow of culture: some notes on globalization and the multina-
tional corporation*. In: Organization Theory and the Multinational Corporation, pp. 275-312.
Palgrave Macmillan UK (1993)

Moe, N.B., Dingsgyr, T., Dybd, T.: A teamwork model for understanding an agile team: a
case study of a Scrum project. Inf. Softw. Technol. 52(5), 480-491 (2010)

Moe, N.B.: Key challenges of improving agile teamwork. In: Baumeister, H., Weber, B. (eds.)
XP 2013. LNBIP, vol. 149, pp. 76-90. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38314-4_6

Moe, N.B., Dahl, B., Stray, V., Karlsen, L.S., Schjgdt-Osmo, S.: Team autonomy in large-scale
agile. In: Proceedings of the Hawaii International Conference on System Sciences (2019)
Moe, N.B., Stray, V., Goplen, M.R.: Studying onboarding in distributed software teams: a
case study and guidelines. In: Evaluation and Assessment in Software Engineering, April
15-17, 2020, Trondheim, Norway. ACM, New York (2020)

Morgan, G.: Images of Organization. SAGE Publications Ltd., Thousand Oaks (2006)
Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering.
Wiley, Hoboken (2012)

Smite, D., Moe, N.B., Agerfalk, P.J.: Fundamentals of agile distributed software development.
In: Smite, D., Moe, N., Agerfalk, P. (eds.) Agility Across Time and Space, pp. 3—7. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12442-6_1


https://www.martinfowler.com/articles/agileOffshore.html
https://doi.org/10.1007/978-3-540-34877-1_23
https://doi.org/10.1007/978-3-642-38314-4_6
https://doi.org/10.1007/978-3-642-12442-6_1

26.

27.

28.

29.

30.

31.

32.

“When in Rome, Do as the Romans Do” 161

van Solingen, R., Berghout, E., Kusters, R., Trienekens, J.: From process improvement to
people improvement: Enabling learning in software development. Inf. Softw. Technol. 42(14),
965-971 (2000)

Srinivasan, J., Lundqvist, K.: Agile in India: challenges and lessons learned. In: Proceedings
of the India Software Engineering Conference, pp. 125-130. ACM Press (2010)

Stray, V., Fegri, T.E., Moe, N.B.: Exploring norms in agile software teams. In: Abrahamsson,
P, Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES
2016. LNCS, vol. 10027, pp. 458-467. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49094-6_31

Strode, D.E., Huff, S.L., Tretiakov, A.: The impact of organizational culture on agile method
use. In: Proceedings of the Annual Hawaii International Conference on System Sciences,
pp. 1-9 (2009)

Summers, M.: Insights into an Agile adventure with offshore partners. In: Proceedings - Agile
2008 Conference, pp. 333-338 (2008)

Williams, L.: What agile teams think of agile principles. Communications of the ACM. 55(4),
71-76 (2012)

Agile India 2012 survey results final. https://www.slideshare.net/ivaltech/agile-india-2012-
survey-results-final. Accessed 11 Feb 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1007/978-3-319-49094-6_31
https://www.slideshare.net/ivaltech/agile-india-2012-survey-results-final
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

A Quantitative Exploration
of the 9-Factor Theory: Distribution
of Leadership Roles Between Scrum
Master and Agile Team

Simone V. Spiegler’2(®)  Daniel Graziotin', Christoph Heinecke?,
and Stefan Wagner!

! Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{simone.spiegler,daniel.graziotin,stefan.wagner}@iste.uni-stuttgart.de
2 Robert Bosch Automotive Steering GmbH, Schwibisch Gmiind, Germany
3 Robert Bosch GmbH, Stuttgart, Germany
Christoph.Heinecke@bosch.com

Abstract. A number of qualitative studies find that team leadership is
one essential success factor for evolving into a mature agile team. One
such qualitative study suggests the 9-Factor Theory of Scrum Master
roles, which claims that the Scrum Master performs a set of 9 leadership
roles which are transferred to the team over time [14].

We aimed at conducting a quantitative exploration that examines the
presence and change of the 9-Factor Theory in relation to team matu-
rity. We conducted an online survey with 67 individuals at the conglom-
erate Robert Bosch GmbH. Descriptive statistics reveal that the Scrum
Master and the agile team score differently on the 9 factors and that the
Scrum Master role is most often distributed in teams that had been work-
ing between 3 and 5 months in an agile manner. Yet, we also find that the
leadership roles predominantly remain with one dedicated Scrum Master.

Based on our results we suggest to group the 9-Factor Theory into
three clusters: the Scrum Master is rather linked to psychological team
factors (1), while the team tends to be linked to rather product-related
factors (2). Organizational factors (3) are less often present.

Our practical implications suggest an extension of the Scrum Master
description. Furthermore, our study lays groundwork for future quanti-
tative testing of leadership in agile teams.

Keywords: Leadership + Scrum Master - Maturity - Agile teams -
Quantitative survey

1 Introduction

Even though an increasing number of organizations aim at implementing agile
teams, how to do so is not yet entirely clear [9,10]. Especially rather bureaucratic
companies seem to struggle in their agile transformation [10].

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 162-177, 2020.
https://doi.org/10.1007/978-3-030-49392-9_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_11

Distribution of Leadership Roles 163

Fitting leadership behavior is found to be one key success factor for evolving
into an agile team [5]. The agile way of working suggests team leadership in
which one dedicated Scrum Master and an agile team share leadership roles [9,
14,15]. Most studies have examined the Scrum Master role applying qualitative
methods [1,9,14,15], while there is a lack in studies to explore these roles and
to understand how much they change [14].

Studies have found that a Scrum Master influences the ability of a team to
work in an agile manner [1,6,9,14,15]. The Scrum Master role not only facili-
tates the Scrum Method but also protects the team from inappropriate external
requests and empowers the team to work self-organized and cross-functional
towards a common goal [2]. Different qualitative studies suggest that the Scrum
Master role changes while the team matures and that some aspects of it are trans-
ferred to team members [9,14,15]. While some studies suggest that the Scrum
Master role is entirely transferred to developers in more mature teams [1,15],
other studies find that one dedicated Scrum Master plays the role differently in
more mature teams [5,9,14]. For example, the Scrum Master is assumed to evolve
from command-and-control behavior to a coach [5,9]. Yet, further understanding
of the changing Scrum Master role in relation to maturity is needed [5,14]. For
example, we still lack in quantitative support for a mature team predominantly
playing the Scrum Master activities [14].

The body of knowledge indicates a need to start quantifying such complex
constructs. With this paper, we aim to contribute to understanding agile teams
by expanding knowledge on the leadership role of the Scrum Master. A for-
mer study by Spiegler et al. [14] examined the activities of a Scrum Master by
applying Grounded Theory and identified nine leadership roles which, for rea-
sons of brevity, we label the 9-Factor Theory of Scrum Master Roles. Among
their results, the authors found seven of the nine roles to be transferred from a
dedicated Scrum Master to the team while it matured over time. The results of
a Grounded Theory study are a new theory for future quantitative work [4].

The present study builds on Spiegler et al.’s [14] theory by providing first
empirical data on the 9-Factor Theory. Through a quantitative exploration, the
present study aims to build groundwork on examining leadership in agile teams
quantitatively and shed light on the distribution of leadership roles among the
Scrum Master and the agile team with respect to team maturity. It is not our
aim to test the process of the role transfer from one Scrum Master to the agile
team.

Our research questions, inspired by [14], are therefore:

— Which leadership roles does the Scrum Master play? (RQ1)
— Which leadership roles does the agile team play? (RQ2)
— Are leadership roles distributed between a Scrum Master and the agile team,

and if so, is the role more often shared in mature as compared to immature
teams? (RQ3).

To answer our research questions we designed an online survey, aimed to
quantify the presence of the 9 factors and the maturity of the team. Sixty-seven
participants from more than 19 different Scrum teams at the Robert Bosch



164 S. V. Spiegler et al.

GmbH, an international company which is active in the automotive, industrial
and consumer industry, took part in the survey. Through descriptive statistics
of the collected data, we found that the leadership roles are shared to a varying
extent between one dedicated role keeper and the agile team. While the Diciplin-
izer on Equal Terms (explained in Sect. 3.2) was shared most often, the Method
Champion was shared least often.

Moreover, our data support a changing Scrum Master role such that it was
shared most often in teams that had been working between 3 to 5months in
the agile manner. Yet, the percentage of teams who did share the roles was
only about 20% and no agile team predominantly played the Scrum Master role.
We therefore conclude that despite sharing of some of the 9 factors, the role
predominantly sticks with one dedicated Scrum Master.

Based on our results, we suggest to group the 9 factors along three different
clusters: psychological team factors, organizational factors and product-related
factors. While psychological factors were linked most often to the Scrum Master,
organizational factors were assigned less often to both parties.

To be able to support organisations in the agile transformation, we provide
empirical evidence on leadership in agile teams. We conclude with a suggestion
for practitioners on the role description of a Scrum Master which can be imple-
mented in real organizational settings. We suppose our results are valuable input
for future quantitative testing of the 9-Factor Theory.

2 Related Work

In the following we describe team maturity and the distribution of the Scrum
Master role in relation to team maturity, ergo the changing Scrum Master role.

2.1 Team Maturity

Team literature research differentiates between static and dynamic teamwork
models. While the first refers to teams that are stable and have successfully
reached a constant mature stage, the second assumes that a team undergoes
different maturity stages. This study refers to dynamic teamwork models since
we believe it helps us in explaining the changing Scrum Master role.

An agile team transfers through the different maturity stages until it evolves
into a truly agile team [6] and, therefore, developers practice the agile way of
working differently over time. Agile teams are linked to the forming-storming-
norming-performing model by Tuckman [16], which we now summarize.

The forming phase suggests that team members focus on a leader who sets
ground rules for further cooperation [16]. Team members are insecure on how
to behave, and they search for opportunities to observe expected behavior. In
this stage, agile teams are suggested to be more open towards leadership that is
centred on one person [5]. The storming phase often involves role conflicts due
to a lack in unity and security [16]. Performance often drops in this stage [7].
The norming phase helps teams to increasingly understand and agree on how
to work in an agile way [5] and to build a shared understanding of roles and



Distribution of Leadership Roles 165

responsibilities [11]. Team performance increases in this phase [7]. The perform-
ing stage describes a high performing team in which the team members play
roles flexibly according to the situation [16].

2.2 The Changing Scrum Master Role

Several authors assume that the Scrum Master role changes depending on the
maturity of the team [1,5,9,14,15]. Moe et al. [9] report on teamwork challenges
of a newly implemented Scrum team over a period of nine month. They observe
that initially the team leadership role was rather centred on the Product Owner
and the Scrum Master. The Scrum Master even started to control team mem-
bers which diminished team leadership and led to less motivation and trust of
the team. While the team matured, the authors observed that team leadership
advanced, such that team members started to take on more responsibility.

Even though several studies find similar results [1,5,14,15], researchers do
not agree on the extent to which the team plays the Scrum Master role over
time. While some authors speculate that only some of the Scrum Master activi-
ties are transferred to the team [5,9,14], other authors suggest that the dedicated
Scrum Master becomes obsolete in more mature teams [1,15]. While a study by
Backlénder [1] describes that often developers grow into the Scrum Master role
over time, Moe et al. [9] discover that team members rarely take over responsi-
bility. Srivastava and Jain [15] conclude that all team members should be able
to take on the Scrum Master role in more mature teams.

Spiegler et al. [14] study suggests a set of 9 leadership roles of which 7 are
gradually transferred to the team, while 2 of the roles remain with one dedi-
cated Scrum Master. Their discovered roles are Method Champion, Disciplinizer
on Equal Terms, Change Agent, Helicopter, Moderator, Networker, Knowledge
Enabler and Protector, which we summarize in Sect.3.2 but are explained to
a greater extent in their paper. We name the nine leadership roles of a Scrum
Master the 9-Factor Theory in the present paper.

Since the Spiegler et al. [14] study is a Grounded Theory based theory
grounded in empirical qualitative data, the 9 leadership roles of a Scrum Master
and how the role distribution unfolds in an immature as compared to a mature
team has not yet been quantitatively analyzed.

3 Method

This section portrays the participants, the measurement, data collection and
analysis of our study.

3.1 Company Context and Participants

Our data was collected from the multi-national conglomerate Robert Bosch
GmbH with more than 20 different sub-companies producing automotive, elec-
trical and consumer industry goods. Scrum teams have the roles Product Owner,
Scrum Master and agile team. Depending on the setting teams may have



166 S. V. Spiegler et al.

additional roles like a project manager, business owner, group leader or release
train engineer. Yet, there is no company-wide standard.

The Scrum Master is a job title at the Robert Bosch GmbH. The person
playing the committed Scrum Master varies among teams. For example, the role
keeper can be a developer or a former group leader. Often, the Scrum Master
is called ‘Agile Master’ indicating that the role keeper should rather focus on
team dynamics than on the Scrum method. Scrum Masters at the Robert Bosch
GmbH are usually not disciplinary supervisors of agile team members, and were
probably without authoritative power in our sample.

In total, 67 participants took part in our study. 46 were from software devel-
opment projects, 3 from software and hardware development, 4 from software
development and IT and the remaining 14 from other topics (e.g. mechanical
engineering, purchasing, human resources). 56.7% of the participants had been
working more than 11 months with their colleagues.

Our sample contained 37 Scrum Masters of which 20 had at least 10 months
of experience in the Scrum Master role. The remaining 30 participants were team
members. 14 team members stated that they were 9 or more members in their
team. We did not measure this item for the Scrum Masters.

Due to confidentiality reasons, providing the team name was optional. 37
participants opted to enter their team name and related to 19 different teams
from nine different business divisions at the Robert Bosch GmbH. Since not all
respondents inserted their team name, we could not map responses to teams and
were only able to compare individual responses.

3.2 Measurement

The research questions guiding this study required a quantitative exploration
of Spiegler et al.’s 9-Factor theory [14]. Each of the nine factors describes a
leadership role. Besides evaluating the existence of different leadership roles,
this study aimed at providing evidence that leadership roles are shared between
a Scrum Master and an agile team and that the leadership roles are distributed
differently depending on the maturity of an agile team.

We now briefly describe the 9 Factors. A deeper description is offered in the
introductory paper [14].

Factor MC (Method Champion): The role contains organizing meetings,
teaching the method, support formulating tasks and setting goals, and dis-
cusses how to adapt the method during the retrospective.

Factor DE (Disciplinizer on Equal Terms): Supports the team to keep to the
rules, ensures that the team focuses on relevant topics and makes sure that
team members attend the meetings. Discipline is accomplished via communi-
cation on a par.

Factor CO (Coach): Observes team members and uncovers which kind of
behaviour is missing in a team to improve teamwork, provides feedback, and
helps teams to find out what they wish to change and how to do so.

Factor CA (Change Agent): Serves as a role model, changes habits, and con-
vinces newly established project teams of the agile way of working.



Distribution of Leadership Roles 167

Factor HEL (Helicopter): Possesses the ability to see the bigger picture, to
know who possess the right skill for a certain task, to include relevant stake-
holders and to structure work.

Factor MO (Moderator): Moderates all kind of meetings and builds a bridge
between perspectives and domains.

Factor NET (Networker): Connects the team with relevant stakeholders from
within and outside the organisation.

Factor KE (Knowledge Enabler): Realises which kind of knowledge the team
needs, supports team members to acquire that knowledge and promotes itera-
tive learning.

Factor PRO (Protector): Shelters teams from inappropriate requests from the
Product Owner, managers, disciplinary leaders and other departments.

Items for Measuring the 9 Factors. Based on the description of the Scrum
Master roles by Spiegler et al. [14], we initially built a set of 67 items. Based
on techniques rooted in pool items and item review [12], after two revisions we
reduced the initial set to 55 items, each connected to one activity of the nine
different roles.

Each factor was covered by 4 to 9 different items. For example, the Disciplin-
izer on Equal Terms contained the following four items: Supports team to keep
to the rules. Helps team to focus on relevant topics. Makes sure members attend
meetings. Communicates on a par. Yet, items are not grouped in the question-
naires, s.t. participants are blind to the existence of the factors. This helps avoid
bias that could artificially form clusters.

Maturity. To test maturity, we asked how many months the team had been
working in an agile manner. The choice is inspired by Wheelan et al. [17]. They
found a significant correlation between the average number of months a team
had been working together and the four group development stages [18], in which
a mature team was perceived to be meeting 5.2months or more on average
(Stage 3=5.2months on average; Stage 4 =8.5months on average). Based on
previous results the question How many months has your team been working in
an agile manner? provided five choices (0-2 months, 3-5 months, 6-8 months,
9-11 months, more than 11 months) (Table1).

Table 1. Maturity

Months Team member | Scrum Master
(N=29) (N =36)

0-2 0 2

3-5 5 8

6-8 6 3

9-11 4 5

More than 11 | 14 18




168 S. V. Spiegler et al.

Self- Assessment and External Assessment. Since teams and formal leaders
often rate leadership behavior differently [3], we conducted a self-assessment and
an external assessment for evaluation of each item (leadership activity). There-
fore, each item contained two Likert items: the self-assessment and the external
assessment. More specifically, the Scrum Master conducted a self-assessment of
the leadership behavior he or she believed to perform and an external assessment
of the leadership activities he or she believed the agile team performed, and the
agile team vice verse rated itself and the Scrum Master.

Therefore, the participants answered each item twice (2*55): one to rate the
Scrum Master and one to rate the team. The participants rated their perception
of leadership activities displayed by the Scrum Master and the agile team using
a five-point Likert item with 1 =strong disagreement that the activity was done
by the respective party, 5=high agreement, and an additional option =Don’t
know/Not applicable. Questions were randomly ordered.

3.3 Data Collection

To assess the 9-Factor Theory we used a web-based survey tool provided by the
Robert Bosch GmbH, as part of the agreement to run the study with them.

To invite Scrum practitioners to take part in our survey, we used our personal
network within the Robert Bosch GmbH and a internal social business platform
provided by the company. An invitation letter contained the link to the online
survey and introduced the broader topic of the research and informed that data
would be treated anonymously and that participation was voluntarily. Besides
treating personal data confidentially on our side, participants had the opportu-
nity to voluntarily insert their team name and their email address to receive their
aggregated team results. This personal data was used for the respective team
retrospective only and for no scientific or management purpose, which was also
emphasized in the invitation letter. Filling out the survey took approximately
15 min. With the exception of the personal data all questions were compulsory.
The full questionnaire is available online [13]. Due to confidentiality requirements
by the Robert Bosch GmbH, the raw data cannot be provided openly.

3.4 Pilot Study

Fight individuals filled out a pilot of the online survey and provided feedback
on understanding the content of the items and the convenience to answer the
survey.

Some participants had stated to be annoyed when they had to read one item
twice on consecutive pages separately for the Scrum Master and the agile team
and the company had urged to build a questionnaire that would not take longer
than 15min to be filled out. Rating each item for both parties at the same time
and on one page was considered to save time and to be more convenient.

Even though we had used the feedback for modification, drop out rate was
60% after launching the survey officially. Several participants delivered the feed-
back that reading all the items on one page was inconvenient. Therefore, we



Distribution of Leadership Roles 169

modified the questionnaire once again, and put the 55 items on three consecu-
tive pages each containing an equal number of items.

This modification led to a loss of data, which we could not plan for with the
tool supplied by the company, in 8 already fully filled-out responses. The modi-
fied survey accomplished 121 responses, of which 68 were completed while 53 did
not reach the last item. We opted to retain only fully completed questionnaires
rather than adding partial data. 16 respondents stopped after they had filled
out the first block of items, while 22 respondents dropped out when reaching the
first block of items and 15 individuals just opened the link without answering
any of the questions. Once again, we received the feedback by participants, that
the questionnaire was inconvenient to be read.

Due to the above-mentioned constraints we still kept the questionnaire the
way it was designed. Also we cannot say with certainty why so many individuals
decided to stop filling out the questionnaire. It may also be that they did not
feel comfortable with rating Scrum Master and agile teams separately.

We removed the responses of one individual who rated every item with
“agree,” likely indicating a lack of motivation to participate in the study. This
led to a total sample of 67 (55.37%) respondents.

3.5 Analysis

For each of the 9 factors we build a mean value by the related items for the
Scrum Master and the agile team separately. To avoid including individuals that
had only answered a few items related to one factor, we included responses in
the calculation of the mean value when individuals had at least answered n—1
items per role. That means, if a factor had 4 items, we only included individuals
that had answered at least 3 of the items.

To assess whether leadership roles were shared between the Scrum Master and
the agile team we applied a similar approach as Zafft, Adams and Smith’s [19]
approach to measuring leadership distribution in self-managed teams. Applying
a b-point Likert scale (1 =strongly disagree, 5 =strongly agree), they suggest a
leadership behavior to be present when someone scores higher than 4.0 [19]. In
our analysis, we considered a factor to be embodied by the Scrum Master or the
team if the respective party rated 4.0 or higher. If one participant rated both,
Scrum Master and agile team, in one factor higher than 4.0, the respective role
was considered to be distributed between both parties within one team.

If at least five of the nine factors were found to be shared within the same
team, we considered the Scrum Master role to be shared between the agile team
and the dedicated Scrum Master.

4 Results

The results are structured as follows: After referring to external and self-
assessment, we will answer our three research questions in consecutive order.



170 S. V. Spiegler et al.

External and Self-Assessment. The average mean for the nine factors revealed
that the Scrum Master tended to rate herself higher than the team rated the
respective Scrum Master, while the Scrum Master tended to rate the agile team
lower. One exception was the Networker which the Scrum Master rated slightly
higher than the team rated itself. Likewise, we found that the team members
tended to rate themselves higher than the Scrum Master rated them, while they
tended to rate the activities performed by the Scrum Master lower.

4.1 Scrum Master

Our first research question is: Which leadership roles does the Scrum Master
play? (RQ1).

To be able to give evidence on the Scrum Master performing one of the nine
leadership roles, the mean value of a factor has to be higher than 4.0 (explained
in Sect. 3.5). The mean value for four factors is higher than 4.0, namely Factor
MC, DE, CO and MO, and more than two third of the Scrum Masters score high
on them. Factor CA, HEL, NET and PRO are linked to about half of the Scrum
Masters. Only about one third have a mean value higher than 4.0 regarding
Factor KE. More information in Table 2.

Table 2. Descriptive statistics for the 9 factors

Factor | Scrum Master Agile team
N |Mean |Std. deviation |n* |h** N |Mean |Std. deviation |n* | h**

MC |67|4.15 |.56 47|70.15%|60|3.19 |.67 7111.67%
DE 67/4.18 |.55 49173.13%|65|3.83 |.52 32149.23%
CcO 66(4.09 |.73 46 {69.69% |64|3.58 |.59 17/26.56%
CA 61/3.95 |.65 37160.66% |56 |3.56 |.52 16 |28.57%
HEL [64/3.73 |.68 28 143.75% 62 |3.72 |.54 24 |38.71%
MO |67/4.07 |.63 49|73.13% |62|3.72 |.48 22 |35.48%
NET |65/3.70 |.86 30(46.15% 62]3.44 |.81 2133.87%
KE 63/3.62 |.76 22134.92% 58|3.58 |.66 20 |34.48%
PRO |62/3.70 |.88 32151.61%53|3.10 |.84 10|18.86%

*n describes the absolute frequency of a factor rating higher than 4.0.

**h describes the relative frequency (n/N per row).

Note: Each column contains summarized results and refers to answers by Scrum
Masters and the agile team taken together.

Therefore, we answer RQ1 and find that a majority of the Scrum Masters play
the Method Champion, Disciplinizer on Equal Terms, Coach and Moderator,
while the Change Agent, Helicopter, Networker and Protector is played by merely
about half of the Scrum Masters and the Knowledge Enabler is performed by
only about one third.



Distribution of Leadership Roles 171

4.2 Agile Team

Our second research question is: Which leadership roles does the agile team play?
(RQ2).

To be able to give evidence on the team playing one of the nine roles, the
mean value of a factor has to be higher than 4.0 (explained in Sect. 3.5). Table 2
illustrates that all mean values of the nine factors related to the agile team are
lower than 4.0. Therefore, one could claim that team members tend to not play
the leadership roles. Yet, almost 50% of the teams score higher than 4.0 for
Factor DE. Between 30% and 40% perform Factor HEL, MO, NET and KE.
Factor MC and PRO are rarely aligned to the team.

Based on our results, we answer RQ2 and find that the agile team tends to
not play the leadership roles. About half of the teams perform the Disciplinizer
on Equal Terms, while only about one third perform the Helicopter, Moder-
ator, Networker and Knowledge Enabler. The Method Champion, Coach and
Protector are performed least often by the teams.

4.3 Distribution of the 9 Factors Between Scrum Master
and Agile Team

The third research question is: Are leadership roles distributed between a Scrum
Master and the agile team, and if so, is the role more often shared in mature as
compared to immature teams?

If a participant scores a factor for both the Scrum Master and the team higher
than a mean value of 4.0, the factor is considered to be distributed between
the Scrum Master and the agile team. While Factor DE, HEL and MO are
distributed in 30% to 40% of the teams, Factors MC, CA, KE and PRO are
distributed in 10% to 20% of the teams. Table 3 shows an overview on the dis-
tribution for each of the nine factors, starting with the most frequently shared
Factor DE to the least frequently shared Factor MC.

Table 3. Distribution of the 9 factors

Factor | Shared | Only Scrum Master | Only team | No one | N | Total %
DE 43.30% | 29.90% 4.50% 22.40% | 67 | 100.00%
MO 31.30% | 41.80% 1.50% 25.40% | 67 | 100.00%
HEL |28.40% | 13.40% 7.50% 50.70% | 67 | 100.00%
(6]0) 25.40% | 43.30% 0.00% 31.30% | 67 | 100.00%
NET |22.40% | 22.40% 9.00% 46.30% | 67 | 100.00%
CA 19.40% | 35.80% 4.50% 40.30% | 67 | 100.00%
KE 16.40% | 16.40% 13.40% 53.70% | 67 | 100.00%
PRO |14.90% | 32.80% 0.00% 52.20% | 67 | 100.00%
MC 10.40% | 59.70% 0.00% 29.90% | 67 | 100.00%

Note: Each column contains summarized results and refers to answers by
Scrum Masters and the agile team taken together.



172 S. V. Spiegler et al.

If a respondent scores a mean value higher than 4.0 for at least five of the
factors for both, Scrum Master and agile team, the Scrum Master role is consid-
ered to be distributed between the agile team and the dedicated Scrum Master.
20.90% of the respondents share the Scrum Master role.

38.5% of the teams that had been working 3-5 months in an agile manner
shared the Scrum Master role, 11.11% of the teams rating 6-11 months shared it
and 18.8% of the teams rating more than 11 months shared the role. Therefore,
teams that had been working for 3-5 months tended to share the role by 20%
points more than teams that had been working for 11 months or more, and by
27.39% points more than teams that had been working in an agile way between
6—11 months.

Furthermore, we check if some teams perform the Scrum Master role pre-
dominantly, such that the team scored for 5 factors higher than 4.0, while the
Scrum Master scored for less than 5 factors higher than 4.0. We did not find
such a case in our data.

Based on these results we answer RQ3 and claim that leadership roles can
be shared, yet, some roles are shared more often than others. While we find that
the Disciplinizer on Equal Terms is most often shared between the team and the
Scrum Master, we find that the Method Champion, Coach and Protector are
rather centred on one dedicated Scrum Master.

Furthermore, the distribution of the Scrum Master role varies in different
maturity stages. We find that teams who share the role had most often been
working in an agile way between 3 to 5months. Therefore, the role was rather
shared in immature teams. Furthermore, we did not find a single team in which
the Scrum Master role was centred on the agile team.

5 Discussion

Our study aimed at exploring the presence of and the change in the 9-Factor
Theory [14]. Based on descriptive statistics, we found that the 9 different roles
are performed to a varying extent:

While the Scrum Master rates highest in the Method Champion, Disciplinizer
on Equal Terms, Coach and Moderator, the agile team scores highest in the
Disciplinizer on Equal Terms, Helicopter, Moderator, Knowledge Enabler and
Networker. Both, Scrum Master and agile team, tend to perform the Protector
less often than the other roles.

Based on this result, we suggest to broaden the 9-Factor Theory by Spiegler et
al. [14]. Our results indicate that the 9 factors can be further grouped into three
clusters: psychological team factors, product-related factors and organizational
factors. We will now elaborate on this idea based on empirical results.

Factor MC, CO and MO rather focus on internal socio-psychological team
mechanisms, while Factor CA, NET and PRO involve an external focus towards
the organization. Factor DE, HEL and KE are rather product-related and aim at
continuous learning and knowledge sharing. The Scrum Master scores higher in
roles related to psychological team factors (e.g. Method Champion and Coach).



Distribution of Leadership Roles 173

The team scores higher in product-related factors (e.g. Helicopter and Knowledge
Enabler). Roles that bridge the organization with the team were played more
often by the agile team regarding the Networker, but less often regarding the
Protector (Table4).

Table 4. 3 proposed clusters of the 9-Factor Theory

Cluster Leadership role (Factor) More important to
Psychological team factors | Method Champion (ME) Scrum Master
Coach (CO)
Moderator (MO)
Product-related factors Disciplinizer on Equal Terms (DE) | Agile team

Helicopter (HEL)

Knowledge Enabler (KE)
Organizational factors Change Agent (CA) It depends
Networker (NET)
Protector (PRO)

Moreover, about half of the teams did not play the Protector, the Change
Agent or the Networker which are linked to the organizational factors. In rather
bureaucratic organizations, as in our case, it might be more difficult to per-
form the roles related to bridging the organization and the team. A traditional
environment rather focuses on hierarchy as opposed to protect the team from
management and on departmentalized structure as opposed to network with each
other independent from formal structures [10].

We speculate that if a Scrum Master played the Protector to a larger extent,
the agile team would take over the leadership roles more often. The Protector
provides hierarchical free space within which team members feel safe to take on
the divers roles [14].

Furthermore, 53% of the teams did not perform the Knowledge Enabler and
about 51% the Helicopter. A possible explanation for our results would be that
either the Scrum Master considers product-related roles to not be part of the
job description since the agile team is expected to self-organize their work, or it
is more difficult to play the respective roles in a bureaucratic context since that
company type is build on experts with specialized skills as opposed to cross-
functional knowledge sharing [10]. This may be supported by the teams scoring
equally low on this factor.

This study also aimed at exploring the 9-Factor Theory in relation to matu-
rity. The 20% of the teams that did share the Scrum Master role, provided
support for the suggestion that the Scrum Master role is distributed differently
in different maturity stages. Teams that had been working in the agile manner
for 3 to 5months and more than 11 months shared the role most often.

This finding fits with the maturity model by Tuckman [16]: Teams after 3
to b months tend to be in the storming phase, within which teams are not sure



174 S. V. Spiegler et al.

about who plays which role within the team. Therefore, both, team and Scrum
Master, perform the Scrum Master roles. Teams working in an agile way for more
than 11 months could already have reached the performing phase within which
roles are played according to the situation and less linked to one dedicated role
keeper.

Yet, we did not find any agile team that played the Scrum Master role to a
larger extent than the dedicated role keeper. Therefore, our results do not point
at the direction that the formal role keeper steps back from the role as suggested
by several studies [1,14,15]. This finding also fits with earlier claims that teams
in organizational settings rarely develop into high performing teams that take
on roles spontaneously [8]. We therefore propose that in most of the teams the
dedicated Scrum Master does not become obsolete over time but rather changes
the primary role during the different phases of team development.

Another explanation of the results could be that neither Scrum Master nor
agile team but someone else took over the role. As described in Sect.3.1 agile
teams and the aligned agile roles vary among different settings at the Robert
Bosch GmbH. It might be that some of the nine leadership roles are also played
by the Product Owner or disciplinary supervisor. However, those roles were
neglected in our study. The last paragraph of the practical implications provide
suggestions on how to deal with this in company settings.

6 Practical Implications

We found that the leadership roles were rather centred on the Scrum Master. In
the following we thus suggest how to develop the Scrum Master description in
company settings. Section 5 proposed to group the Scrum Master description into
three clusters: psychological team factors, organizational factors and product-
related factors.

While some practitioners suggest that the Scrum Master should play product-
related roles, others state that interference on a technical level hinders self-
organizing teams. We suggest that every team should discuss on its own, to which
degree it needs product-related support by a Scrum Master. Yet, a Scrum Master
who performs product-related roles builds an understanding of the respective
product, thus, can also more easily bridge the agile team with the processes,
requirements, tools and standards of a rather bureaucratic surrounding.

For example, the Scrum Master can be a mouthpiece of the team to discuss
with the management which processes and requirements of rather traditional
project management are still needed despite the team working in an agile way,
and which ones are rather unnecessary and hinder the progress of the team. The
Scrum Master can argue which tools and processes the team needs to work in a
more agile way. Also, taking over product-related roles improves understanding
when to protect the team, e.g. from re-prioritization, and when to give in and
allow to re-arrange planning due to changes in requirements on organizational
level.

Thus, the Scrum Master supports the organization to gradually evolve into
a more agile place. Yet, we acknowledge the balancing act of a Scrum Master to



Distribution of Leadership Roles 175

support the team in product-related matters and to serve as a coach at the same
time. The Scrum Master continuously needs to serve as a coach and support the
team to learn how to take on the divers roles.

Agile teams in a traditional industrial conglomerate may not be used to take
on leadership activities as a whole team. Yet, if the leadership gap [14] is not
filled by the agile team, there is the risk of a leadership vacuum, in which no one
takes over leadership roles. This may lead to less performance.

Nevertheless, we found that the Scrum Master and the team tend to play
organizational factors to a lesser extent, and encourage managers even further
to build an agile friendly surrounding within which the organizational factors
can be performed. These factors are necessary to integrate the agile team into
the organizational setting, such as having access to relevant stakeholders and
information, reducing interfaces and efforts for alignment and building trust
between agile teams and traditional structures. Consequently, motivation and
progress of agile teams will increase even further. Yet, organizations also need to
understand and accept that sometimes teams do not want to take on leadership
roles.

Therefore, companies should use our questionnaire to reflect upon the role
distribution in their specific industry background and organizational environ-
ment relevant to their team. There might be roles beyond the Scrum Master
and the agile team that take on the leadership roles. Thus, we suggest to not
only focus on leadership sharing among the Scrum Master and the agile team but
to broaden the perspective. We propose to use the leadership roles and aligned
activities to determine if they are covered by any ‘job title’ in the setting, which
might be the Product Owner or the disciplinary supervisor. After all, the agile
way of working is not about establishing a standard regarding which job title
plays which leadership role but about making sure that the needs of an agile
team are covered in any given situation. Since teams mature and agile settings
vary, teams need to find a context-dependent equilibrium of leadership sharing.
Therefore, each team has to discuss on its own how to divide leadership activities
among each other. Furthermore, since context changes, teams need to discuss
regularly upon who takes on which leadership role in a given situation. Practi-
tioners will understand respective leadership needs, learn to balance and evolve
them, and thus, improve teamwork.

7 Limitations and Future Work

In the following we will suggest future topics for research while referring to
limitations of this study.

Objectivity: since we conducted an online survey, we assume a low level of social
response bias. Yet, respondents were allowed to insert their email address for
receiving their team results. This could lead to a social response bias in such a
way that respondents wanted to rate high in the Scrum Master activities.
With 67 participants our sample is limited in size and prevented us to per-
form a psychometric evaluation of the tool, limiting our confidence in the tool



176 S. V. Spiegler et al.

validity. A psychometric evaluation of the tool would not be a familiar step in
software engineering studies, so we see this as a missed opportunity rather than
a limitation. Future studies should aim for a bigger sample size that allows to
perform an exploratory factor analysis, thus quantitatively clustering the factors.
As the theorized 9 factors might be difficult to test psychometrically, we suggest
future studies to test the three suggested clusters in Sect.5, thus, allowing for
testing agile team behavior along three variables instead of nine.

Since the drop-out rate for this study was quite high, for future studies we
suggest, to rate the Scrum Master and the agile team each on separate consec-
utive pages. Therefore, participants will have to answer six different pages of
questions. This will take more time, yet, may lead to a more convenient experi-
ence to fill out the questionnaire, and thus, increase the number of responses.

Moreover, even though each business division operates within a different sub-
culture and industry context, still all teams were from the same conglomerate.
Even if our study is clearly placed as an exploratory one, we want to highlight
that we cannot claim our results to be universally applicable. We suggest a larger
sample drawn from different companies with different industry backgrounds to
extend our study in the future.

Moreover, almost 50% of the team members stated to be 9 or more persons
in their team. We were not able to control for this variable since we had not
asked the Scrum Master on their number of team members. Larger groups are
found to be less likely to evolve into a mature team [17]. Future testing should
take this into account.

Our data points at an evolving Scrum Master role in relation to maturity.
However, maturity was rated by the number of months each team had been
working in an agile way. We cannot claim with certainty that the time a team
has been working in an agile manner is related to maturity stages. Furthermore,
we have not conducted a longitudinal study but compared different teams which
had been working a varying amount of time in the agile manner.

Future testing should refer to the maturity stage by Wheelan [17] to examine
the 9-Factor Theory for a valid measurement of group maturity, investigate time
and group development in relation to varied company types and sizes, as well as
in a longitudinal study.

References

1. Béacklander, G.: Doing complexity leadership theory: how agile coaches at spotify
practise enabling leadership. Creativity Innov. Manag. 28(1), 42-60 (2019)

2. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34(11), 131-133 (2001)

3. Crevani, L., Lindgren, M., Packendorff, J.: Leadership, not leaders: on the study
of leadership as practices and interactions. Scand. J. Manag. 26(1), 77-86 (2010)

4. Glaser, B.G., Strauss, A.L.: Discovery of Grounded Theory: Strategies for Quali-
tative Research. Routledge, London (2017)

5. Gren, L., Goldman, A., Jacobsson, C.: Agile ways of working: a team maturity
perspective. J. Softw.: Evol. Process (2019, in press)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Distribution of Leadership Roles 177

Gren, L., Torkar, R., Feldt, R.: Group development and group maturity when
building agile teams: a qualitative and quantitative investigation at eight large
companies. J. Syst. Softw. 124, 104-119 (2017)

Katzenbach, J.R., Smith, D.K.: The Wisdom of Teams: Creating the High-
performance Organization. Harvard Business Review Press, Boston (2015)
Marks, M.A., Mathieu, J.E., Zaccaro, S.J.: A temporally based framework and
taxonomy of team processes. Acad. Manag. Rev. 26(3), 356-376 (2001)

Moe, N.B., Dingsgyr, T., Dyba, T.: A teamwork model for understanding an agile
team: a case study of a scrum project. Inf. Softw. Technol. 52(5), 480-491 (2010)
Nerur, S., Mahapatra, R.K., Mangalaraj, G.: Challenges of migrating to agile
methodologies. Commun. ACM 48(5), 72-78 (2005)

Neuman, G.A., Wright, J.: Team effectiveness: beyond skills and cognitive ability.
J. Appl. Psychol. 84(3), 376 (1999)

Rust, J.: Modern Psychometrics: The Science of Psychological Assessment. Rout-
ledge, New York (2009)

Spiegler, S.V., Graziotin, D., Heinecke, C., Wagner, S.: A quantitative exploration
of the 9-factor theory: distribution of leadership roles between the scrum master
and the agile team (2020). https://doi.org/10.5281/zenodo.3634046

Spiegler, S.V., Heinecke, C., Wagner, S.: Leadership gap in agile teams: how teams
and scrum masters mature. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019.
LNBIP, vol. 355, pp. 37-52. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-19034-7_3

Srivastava, P., Jain, S.: A leadership framework for distributed self-organized scrum
teams. Team Perform. Manag.: Int. J. 23(5/6), 293-314 (2017)

Tuckman, B.W.: Developmental sequence in small groups. Psychol. Bull. 63(6),
384 (1965)

Wheelan, S.A., Davidson, B., Tilin, F.: Group development across time: reality or
illusion? Small Group Res. 34(2), 223-245 (2003)

Wheelan, S.A., Hochberger, J.M.: Validation studies of the group development
questionnaire. Small Group Res. 27(1), 143-170 (1996)

Zafft, C.R., Adams, S.G., Matkin, G.S.: Measuring leadership in self-managed
teams using the competing values framework. J. Eng. Educ. 98(3), 273-282 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.5281/zenodo.3634046
https://doi.org/10.1007/978-3-030-19034-7_3
https://doi.org/10.1007/978-3-030-19034-7_3
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

What an Agile Leader Does: The Group
Dynamics Perspective

1,2,3(=

Lucas Gren ) and Magdalena Lindman?

! Chalmers University of Technology, Gothenburg, Sweden
lucas.gren@cse.gu.se
2 University of Gothenburg, Gothenburg, Sweden
3 Volvo Cars, Gothenburg, Sweden
magdalena.lindman@volvocars.com

Abstract. When large industrial organizations change to (or start with)
an agile approach to operations, managers and some employees are sup-
posed to be “agile leaders” often without being given a clear definition of
what that comprises when building agile teams. An inductive thematic
analysis was used to investigate what 15 appointed leaders actually do
and perceive as challenges regarding group dynamics working with an
agile approach. Team maturity, Team design, and Culture and mind-
set were all categories of challenges related to group dynamics that the
practitioners face and manage in their work-life that are not explicitly
mentioned in the more process-focused agile transformation frameworks.
The results suggest that leader mitigation of these three aspects of group
dynamics is essential to the success of an agile transformation.

Keywords: Leadership - Agile development processes - Qualitative
study

1 Introduction

The reported benefits of an agile approach includes increased customer collabo-
ration, better estimation of tasks, and increased quality [1], but also higher job
satisfaction [2] as well as overall stakeholder satisfaction and, therefore, project
success [3]. All of which have contributed to the popularity of the agile app-
roach to development work. Agile development, compared to the plan-driven/
waterfall, implies more communication and stronger focus on people, which make
the social-psychological aspects very important to understand, including leader-
ship and management [4].

The research on leadership was focused solely on the leader as an individual
for many decades, often referred to as great person theory of leadership [5]. The
challenge for leaders was then to be categorized as a leader, but once accepted,
the leader could probably act as he saw fit to a larger extent (leadership was also
categorized as a male trait). The research on leadership and management then
shifted from trying to find the best leader to looking at what the best leaders

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 178-194, 2020.
https://doi.org/10.1007/978-3-030-49392-9_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_12

What an Agile Leader Does: The Group Dynamics Perspective 179

actually do, since it turned out not all the behaviors in one accepted leader were
towards effectiveness in general [6]. After that, instead of a focus on finding the
best leadership style, a more systematic and situational view of leadership has
developed [7]. What is the best leadership depends on the context, and, in some
theories, on the maturity level of the co-workers, but it also contains a balance
between task- and relation-focused behaviors connected to these phases [8]. The
leader role has thereby become more demanding and requires adaptability to
context in a way that was not highlighted before. Trying to exert leadership
from its context, the way researchers and practitioners have done, is probably a
mistake. Schein [9] writes that leadership and culture are two sides of the same
coin, and Northhouse [10] also emphasizes the importance of context, where
he also models leadership as a collective ability of initiative. Dynamic team
leadership [7] is not new in psychological science, and also a property of teams
that are in the more mature stages of small group/team development [11].

Recent studies in software engineering has shown that the definition of agile
teams overlap with what is meant by a mature team in social psychology [12]. We
define team maturity in this study as the degree to which a team has navigated
through the group development stages according to Tuckman [11]. Teams tran-
sitioning towards agile ways of working are often in the middle of two paradigms
where the more classical hierarchical management structure is in an organiza-
tional change process towards new forms of more dynamic and shared team
leadership [13]. Spiegler et al. [14] showed that the leadership function is gradu-
ally transferred from the Scrum Master to the team members over time. In more
general leadership science, Millikin et al. [15] showed that self-managing teams
have higher productivity even in multi-team settings and that the highly cohesive
teams perform the best. In the agile space, e.g. servant leadership is advocated
as the foundation for leading, but the definition of what that is remains vague
[16]. Tt is, therefore, still unclear what the behavior and challenges are in relation
to group/team dynamics when implementing agile teams from the perspective
of an appointed leader.

If the goal of leadership in an agile world is for the teams to eventually lead
themselves within their mandate and technical expertise, we can also look at
psychological theories on how to lead towards self-organization. We define self-
organization in this paper as a state where the initiative, responsibility, and
drive towards accomplishing team goals are dynamically shared between many
team members in the same team. In past psychology research on self-organizing
teams, team design has been found to be more important than team coaching
when striving for self-organization [17]. In this context, Wageman [17] defines
team design as including all the following eleven design features: (1) real team,
(2) clear direction, (3) appropriate size, (4) skill diversity, (5) task interdepen-
dence, (6) challenging task objectives, (7) core strategy norms, (8) team excel-
lence recognized /rewarded, (9) information for planning available, (10) training/
technical consultation available, and (11) material resources available. We define
team design in this paper as the eleven features above but want to stress that a
role that is less integrated in the team compared to team members, needs to help



180 L. Gren and M. Lindman

design the team with regards to these eleven features. In our experience, agile
teams are sometimes set up so that the teams themselves are expected do the
design work, which is not what Wageman [17] found to work well. She instead
highlights the external leader role in enabling teams to self-organize over time.

Furthermore, Wageman [18] describes the different roles of a leader as first
having to be a designer, which includes (1) “setting a direction for the per-
forming unit, design a team task and a team reward system,” (2) “making sure
the team has the basic material resources it needs to do the work,” and (3)
“establishing the team’s authority over and its responsibility for its performance
strategies.” Only later can an appointed leader be what is refer to as a midwife
that should act at natural breaking-points in the team’s further development,
which comprises “working with the team to establish appropriate performance
goals.” These goals should be measurable and specify “how a team will take on
its work in ways that fulfill its overall direction.” Only in the final step should the
leader be a coach. Team coaching is only possible with the other two steps ful-
filled and only then will the team make good use of the coaching. She continues
to state that “because well-designed teams are robust enough to bounce back
from inappropriate leader actions, the leader now has the latitude to unlearn
old managerial habits and take the time that is needed to learn effective team
coaching skills” [18].

We define leadership as a function of initiative or group action [10], and
therefore, view all the described behavior as components of leadership. Our
research goal is to understand what appointed agile leaders do when building
and maintaining agile teams and where that fits into related work on leader-
ship behavior. A qualitative research method allows for a deeper analysis of the
complexity of a construct, and allows research participants to speak freely about
their reality. Therefore, a qualitative approach is appropriate to study leadership
in the context of agile teams. This study aims at investigating how agile leaders
at different positions at different industrial development departments interpret
the, vaguely defined, concept of agile leadership in relation to group dynam-
ics in their real-world context. The research question is, therefore, RQ: What
are the behaviors and challenges in relation to group/team dynamics
when implementing agile teams from the perspective of an appointed
leader?

2 Method

This section presents the method we used to analyze the leadership situation in
the agile development context.

2.1 Procedure

The participants were obtained indirectly through our industry or research con-
tacts. We asked these contacts to suggest fitting participants which we then
contacted by email. A heterogeneous sample was achieved by recruiting people



What an Agile Leader Does: The Group Dynamics Perspective 181

from many different companies, both with an overview of the development part of
the organizations and people in new agile roles of newly formed teams. All of the
people that we contacted participated. We conducted 45 to 90 min open-ended
interviews, and thirteen of them were conducted using teleconference. First, a
personal introduction of the researcher(s) was done including research back-
ground, and what the researcher wanted to find out though the overall research
project. The interviewer then asked for permission to record the interview and
emphasized the anonymity of the data collection. Two interviews were conducted
face-to-face and recorded on a mobile device, but were transcribed in the same
way. Thirteen of the interviews were conducted by the first author in English,
and two were conducted by the second author but in Swedish. The interviews
were transcribed verbatim afterwards and Swedish quotes were translated into
English.

Interview Protocol. Most of our questions were descriptive in nature, however,
some were also contrasting and reflective. The reason why we wanted to be
concrete and not ask directly about emotions and interpretations was that we
wanted to meet the engineering at their own discourse, i.e. use vocabulary that
engineers are used to in their work situation. If the interviewee expressed frus-
tration, emotion or problematized something we asked follow-up questions to
prone the person’s interpretation and experience around that topic.

The interviews were semi-structured and aimed to answer the research ques-
tion on what main challenges agile leaders define in connection to group dynam-
ics. We selected participant who saw themselves as leaders in the agile context
an did not use any specific role or definition thereof. Examples of questions used
to investigate such association were: “What do you think is working/not work-
ing with the agile implementation and why?” “Do you see a difference in how
high performing teams adopt agile compared to new or less mature teams?” and
“How do work processes evolve in agile teams?”

2.2 Participants

The participants were practitioners working with an agile approach, according
to themselves, on different levels of organizations, ranging from team Scrum
Masters to founders or CEOs. The first thirteen participants were involved in
software development and the second two were involved in hardware development
complementing the sample since agile has spread to other areas than software
development. However, the conclusions drawn from the hardware part should
be considered with care since generalizations most likely cannot be drawn from
only two participants, i.e. we have yet to see saturation in that data.

Table 1 provides a brief guide to the variety of cases that we investigated
with information about the interviewees, and their organizational situation. The
interviewees worked in companies ranging in size from 35 to 56 000 employees,
and represented work cultures in seven different countries. Three of the partici-
pants where in an environment that started with an agile approach to work from
the beginning. However, since they still described the agile way of working in



L. Gren and M. Lindman

182

so130[0UTD0) MU

Iado[aAsp pur

I99SRIN WNIDG POyILIe))
g 99MOIAIOYU] "TIed)
a1} JO UOIjRULIOJSURIY
o3 o1} SUIALID I9)SRIA

jo juawdofeaap jsej oy o3 ydepe 03 pajuepn ssooo01d [[eJIo)eAN wnIng :T samdrarequy | 3 Aueduwo))
(eouarrodxa
2In9oNI9)s [euoIjeZIUR3IO ey AIoA s1eak 7<) Auedwoo
Auedurod aiSe ue se pajrelg e ur sonjea pue sojdurid o[iSe uo jying Awedwod y oiSe ue jo repunoy | r Auedwo)
1deouoo 819 Jnoqe pieay pey a[ox
Auedwos o[18e ue se palIe)s A9} 910Joq SpoOT}oW 9ISk 09 Ie[IWIs AIoA JUIYPOUWOS Surproddns odAy-mynwt y | j Auedwo))
swo[qoad Teuoryeziuesio sureay o[1Se 1SIy 93 Jo U0
SAJOS pU® YOR(PAd] 191SB] pur I19119¢] Pl s1osn jeym SuissenS Jo aInyno y | ur refeueuw/e)sejy wniog | [ Aweduwo)
RELEI A
WNIDG 1§ 99MITAIUT
'Swe9) 0M) JO I9)SBRIN
WNIDG g 99MOIAISNUT
I99se] padolessp ‘198eurRy 109(01/1998RN
aq 09 pepesu sjonpoad o) e pazifesay] surea) 9[i3e se pajIels wnIng :T domorarouy | H Auedwo))
yoofoad gorid UOIINO9XD
e pojIe)s ‘spoyjew oISk noqe peal peH sso00ad [ejierep) | 0oloxd ur eleurw 100(01g |  Aueduwo))
s1o8euew jooloxd
GT JO Pear :g 99MOIAIOU]
‘UOTIN(IISIP PUR so[es
Auedwod o1y saoxduugy sso00a1d [[eJI9leA\ | I9peS] WeAT, T 9omalAIeu] | 57 Auweduwo))
(enSe
oOnN[eA IDAI[OP 0} SAem dAT}RAOUU] ssoooad [[ejiojepy | pojeryiur) teSeue]y 309loig | (g Auedwo)
1se19qul [euosiod aqisuodsal jusureSeuet
Jo peegsur serjrionad 300foad uo snooq sseooad o0y py orjojprod 109fo1g | H Auedwo))
onyea ssouisng posoxduy ssooo1d [[eJIorepn peol 108eurw joolorg | g Aueduwo)
Ajirenb
pue ‘uorjoejsiyes qol ‘yuome8eIus 9I0J\ sso00ad [[ejIorep yoeod o8y | 7/ Auedwo)

o[1Se 10J uoseay

o[1Se a10Joq pasn PoYIdIN

S99MOIAIIIUT

‘uoryewiojut Aueduwo)) T a[qe],



What an Agile Leader Does: The Group Dynamics Perspective 183

contrast to their own and their colleagues previous ways of working, we opted
to analyze all the transcripts in the same way.

2.3 Reflexivity

In accordance with Braun and Clarke [19], we believe that we “cannot free our-
selves of our theoretical and epistemological commitments,” thus, we acknowl-
edge our previous knowledge of group dynamics as researchers as well as experi-
ence from working in various teams and from leadership. We, therefore, acknowl-
edge that we cannot be completely objective when interpreting the challenges
stated by the participants. However, we did not have a preexisting coding scheme
and tried to let the participants speak freely about their experiences without
us intervening. The guidelines by Dahlberg et al. [20] were applied in that a
researcher must be prepared that data can present things differently than what
was initially thought, i.e. we wanted to be surprised as researchers. The intention
was to apply intellectual honesty, and thoroughness in reasoning and in view of
condition and consequences. We then also want to avoid favoring one’s own per-
son, skewed sampling, omission of negative evidence, one-sided maneuvers and
wishful thinking [20]. The second author is an expert engineer without previous
knowledge in agile methods but a lot of experience from product development,
and could therefore provide an eyes-open-wide approach to the challenges stud-
ied. The first author is a researcher on the topic of building self-organizing agile
teams and is therefore knowledgeable about the agile approach. However, he sees
the agile methods as having a potential of positively transforming many parts
of an enterprise, but also sees challenges with how it is sometimes implemented
in practice. Therefore, the first author had no preconception about what results
would be better or worse in conducting this study.

2.4 Analysis

We analyzed the transcripts using the six phases of thematic analysis suggested
by Braun and Clarke [19]. The first step was to read the entire transcripts
before coding took place. We then consistently focused our analysis on state-
ments regarding challenges of agile leadership in relation to group dynamics in
concordance with our research question. The analysis was inductive in nature
since we wanted to keep an open mind to emerging themes in the data. The
first author began by coding the first thirteen interviews and the second author
coded the remaining two. We then cross-checked two transcripts and themes
and we discussed and resolved discrepancies. Then, as the third step, different
codes were put together into themes and (the fourth step) checked whether we
agreed upon which themes fit with the codes. We applied descriptive coding
[21] since our research question is in relation to finding separate challenges of
group dynamics that the practitioners working with an agile approach need to
manage in their daily work. Therefore, connections or hierarchies in the found
challenges were not sought for. The fifth step was then to assess the nam-
ing of the challenges and, as a final step, connect them to existing literature.



184 L. Gren and M. Lindman

Our epistemological approach leans towards a phenomenological view more than
the social constructionist one, since we believe the challenges of group dynamics
in relation to leadership roles can be described directly. We believe this partly
due to the fact that our interviewees deal with group dynamics in practice every
workday, that these concept are less emotional compared to other psychological
constructs. They were therefore expected to be able to articulate their challenges
as agile leaders accordingly [22].

3 Results

The three main leadership challenges found in our data is summarized below.
The challenges are shown below together with quotes and a discussion to support
the claims.

3.1 Team Maturity

When the interviewees compared less and more mature teams, the latter were
said to tailor their own agile process based on contextual knowledge. One inter-
viewee saw a strong connection between more mature teams that have met for
a longer period of time and how much initiative and responsibility they take for
the process and collaboration, implying that their leadership role is easier and
more consultative.

“They reinforce the practices within the teams themselves.” [Project man-
ager and initiator of the agile approach]

Another indication that the level of team maturity is highly influencing the
appointed leader’s leadership style in agile teams, is the fact that more mature
teams were said completely adopt the agile practices they find useful, while less
mature teams need reinforcement of the practices, otherwise they are reluctant
to use them. To enforce the practices is then something the leaders describe that
they must do for the team.

“Those are very visible high performing teams self-directive aspects vs.
those needing reinforcement of the practices for them to be there.” [Project
manager and initiator of the agile approach]

A key seems to be to suggest best practices by the leaders for the team,
have a minimum of what is allowed, and then let the teams tailor their process
themselves. In such a way, less mature teams will resort to safety by adopting a
predefined process but can then redefine their process as the team matures.

“We really try to get the teams to focus on staying within the framework,
but they have latitude and liberty within that framework to, based on
their own team style or team makeup.” [Project Management Leader]



What an Agile Leader Does: The Group Dynamics Perspective 185

Another interviewee clearly stated that even the most self-organized teams
were different initially. The “agility” simply had to wait for the team to mature,
which means that the needed leadership style is different across time.

“Yeah, these days they don’t need me in order to work. These days I am
really a facilitator and the team is absolutely able to the normal Scrum
process without me. They don’t need any guidance any longer so I can
easily go on vacations for 2—-3 weeks, that’s not a problem. /.../ Of course
in the beginning I had to stop them in the dailies and say ‘Stop discussing
solutions,” just the tasks, please, and the three questions bla bla bla. Now
it’s more or less routine.” [Scrum Master]

This indicates that the self-organization of teams emerges over time along
with the team maturity from a psychological perspective, which also implies that
the leaders must take on the function of leadership initially before that function
can be shared. In addition, the built in flexibility of the agile processes is also
something teams need maturity in in order to leverage in the intended way. One
interviewee stated that more mature teams can easily change their process if
asked, which is not something the less mature teams could do in the same way.

“We are trying to adopt Kanban. But there are other teams here that
have only worked with Kanban for a few months. They tried it because
they saw some problems we had with Scrum. Some of the teams matured
faster (mainly because they didn’t break up the teams all the time as we
do here) and they changed to Kanban.” [Scrum Master]

For teams that are mature, and where the members are dedicated and have
set clear roles, the interviewees saw that they could adopt self-organization and
team agility without many issues, putting less focus and dependence on them as
the designated leader or manager.

“The team we have is an extraordinary team with a very open mindset
and a very innovative team and always open to new things, so they were
very open-minded so that was not much to say, and they trusted me.”
[Project Manager Lead]

To summarize, the first found challenge is that the agile leader needs to take
a step back from mature teams and instead facilitate the team’s work process
in relation to the surrounding ecosystems of the teams. However, in order to
implement agility in the less mature or newly formed teams, they also need to
provide a lot more direction and guidance in order for such teams to become
self-organizing agile teams.

3.2 Team Design

The team design process is very much connected to team maturity as described in
the previous section. However, the following quotes are in this category because



186 L. Gren and M. Lindman

they are a symptom of a lack of team design from an external role, not a symptom
of the team being new.

When teams were not given an initial structure, some interviewees were sur-
prised and frustrated when newly formed teams expressed a need for clear and
directive leadership.

“It was the first retrospective that we had, they say that they lack some
leadership there and then during the retrospective we were talking like ‘no
it’s not leadership that you need, how about that you decide how you will
do things and the new habits that we will create in the next sprint.” What
kind of agreements that we have to have for solving that problem, and
we’re saying that the lack of leadership is the result. That’s one thing that
appears a lot because we are growing and new teams are being formed.”
[Founder of an agile company]

New team were also described as being open to any work practices and lack
the insight into what is useful or needed in their context. This entails that the
leader needs to step in and guide the team in making such decision, something
that was described frustrating for the leaders since they did not expect that in
the agile approach. However, the team must get help in its initial design since
no team members can know the context simply because it is new to them.

“Yeah, for teams that are younger, like formed more recently, they tend
to be more open to all the practices, but they don’t have the experience
to decide which practices that would be the best.” [Founder of an agile
company]

Also in relation to new teams, one interviewee changed the agile practice of
volunteering for task because the team was not ready to take on that responsi-
bility on a team level. This implies that the leader felt the need to step in and
be more directive, however, with the expressed frustration that such a leader
behavior is not appropriate in the agile context. Teams, though, seem to need
help in designing work processes initially.

“In agile people should volunteer for tasks, but in most cases here we are
obliged to... we do task assignment, by me or the person who already
worked on this item takes this item. I know that this isn’t a good practice
in agile, but we do it for our team and for more productivity, but also for
responsibility.” [Scrum Master]

An interviewee from hardware development also highlighted that, since the
company is expanding all the time and therefore consistently gets more team
members, it is difficult to design and build self-organizing teams, which is a core
part of the agile approach and frustrating for them as leaders.

“You have to be very involved to be able to get a clear direction from
it, and that’s hard, especially because our group has grown so much and



What an Agile Leader Does: The Group Dynamics Perspective 187

we get new people all the time who don’t have that direction from the
beginning. /.../ The further the team gets, and the more you have worked,
the more autonomous the group becomes.” [Scrum Master and Software
Developer]

We also found support for the distinction between what is an organizational
and enforced structure and what is up to the teams themselves, i.e. the right
balance in team design. Teams with no provided structure were described as
much less effective but it is about providing the right balance of flexibility and
control by the people in leadership positions.

“The teams can change as they want [in the process] all the time.” [Sup-
porting role]

Traditionally, it seems like most software development processes did not have
any team reflection sessions by default. The agile process often adds the retro-
spective meeting, which is a structure for team reflection, which was described
as helpful for the leaders in order to improve the teamwork.

“The developers, I think, also feel that it provides them with a preset
structure within which they can communicate with each other; they don’t
have to set up a meeting to do this. We have our Scrum identify that
they need to meet to talk about something, and then they do. So it puts
things in place for them and they don’t have to think about it.” [Project
Management Leader]

To summarize, the leaders need to help transitioning teams to design their
new agile structure and ways of working. If teams are not ready to tailor their
own process, the leaders provide suggestions and best practices, but keep stating
that the team should continuously improve their process based on what they
learn about their ecosystem. This means that, when the teams are set up, they
need an initial predefined team design and then be given the possibility to tweak
their processes when the team is ready.

3.3 Culture and Mindset

The third and final challenge was that the leadership also needs to be adjusted
to the existing more traditional structure and culture of the company. We found
that even if members and teams can adopt self-organization, the context might
hamper this way of working.

“If the whole company was agile in the end, the teams could be more
independent and talk to the business area more themselves, but now I
spend a lot of time trying to make decisions on what the teams should
do.” [Scrum Master]



188 L. Gren and M. Lindman

All the interviewees spoke about the different agile roles changing dynam-
ically based on what is really needed at a point in time. A project manager
acts as a Scrum Master, or trying to help people to not fall into old patterns of
behavior in relation to the old structure instead of the new agile process.

“After the first project I was able to spend time educating them at the
beginning, but had to make almost daily conscious efforts at reminding
them, or educating them with when I could see that their though process
was tending toward waterfall. So T’ll try to point out: ‘oh actually, let’s
think about it this way.” Or, you know, helping them with definitions like
what the basic function of the daily Scrum for example and remind them
of that. That it’s not a status meeting, for example.” [Scrum Master and
Project Manager]

One participant from the hardware-focused development also highlighted the
fact that all individuals do not have the same possibilities, or motivation, to
adapt to the new ways of working. The participants from hardware and software
development differed in that the hardware-focused interviewees focused on the
“old” ways of working as compared to the new agile way, while the software-
focused participants reflected more on the team’s place in the company as a
whole.

“Partially, I believe it’s due to... from what I've heard, that [a team mem-
ber] that is a bit more senior and has had previously bad experience from
the agile ways of working in other areas and therefore doesn’t think it
worked well and actually only sees the negative aspects. [The team mem-
ber| just does this because everybody else wants to do it, but does not
think it will work. And therefore it does not fully work, because you... it’s
hard. I think it’s really hard to have one leg in it, and one outside, you
know...” [Scrum Master driving the agile transformation]

From the hardware-focused participants, they described their agile imple-
mentation as something that needed to be agile in itself. That means that they
had to related their new process to also fit with the old, which was described as
challenging.

“We have tried to see the work process as something agile and adaptable
too! Now there are more clear toolboxes with how to work in an agile
way in the company. When we started that didn’t exist, but, I mean that,
when you talk about Scrum as an agile method it’s not anything more
than a toolbox with different practices, and you have to try to pick what
suits your organization and your... we started with that mindset that we
would have ‘what is the smallest part of scrum we can pick?’ or ‘what is
the smallest set of tools we can make use of?’ and then, I guess, with time
we have realized that, yes, ‘we need this’ or ‘we need do do that one too’.
[Scrum Master driving the agile transformation]



What an Agile Leader Does: The Group Dynamics Perspective 189

To summarize, the participants’ leadership style is also adapted to where the
company is in its agile journey, not just the internal process structure, as in the
previous theme. The leaders act as both more traditional managers and as more
agile (i.e. contextually adapted) leaders depending on what is needed at that
point in time.

4 Discussion

This study found that the main challenges in relation to group dynamics in the
agile context is to adapt the leadership to the (1) teams’ collaborative maturity,
(2) design new teams well, and (3) balance the “old” ways of working with the
intended new agile processes and their innate different culture. The first one,
called (1) Team maturity included that the agile leaders saw a need to step
back from mature teams and then be the facilitator with a strong focus on
impediments external to the team. However, as agile leaders, the challenge from
their perspective was that newly formed, or less mature teams, on the contrary,
needed a lot of support in order to grow into agile teams. This was not seen a
“agile” by the interviewees and expressed as frustrating.

The second category (2) Team design is connected to the first category but
focuses on that teams need to be well designed in the agile context and get much
more help setting up the agile team than the interviewees initially had thought.
Teams do not seem to be able to design themselves when starting their agile
journey, but instead need a suggested initial team design. New teams, that are
less mature by definition, cannot tailor their own agile process, but need help
to get started and can then improve their process based on what they learn
about their ecosystem. The third category (3) Culture and mindset is about
that the needed adaptability of agile teams are also in relation to where the
whole company is in its overall agile journey. Agile leaders described that they
acted as more traditional managers sometimes, if needed, but also adapted to
where in the company teams were more allowed to drive themselves within their
predefined mandate.

That team maturity is connected to team agility has been shown in previous
studies (e.g. Gren et al. [23]). The third category also confirms previous results
on the difficulty with integrating an agile approach to a traditional context
(e.g. [13]). The second category, though, on the importance of team design, as
conducted by a leader more external to the team, seems to be a novel finding.
Even with regards to the other two categories, this study adds to knowledge
since it focuses on the appointed agile leaders and what challenges they define in
relation to building agile teams. More immature agile teams were said to be more
open to all the practices, and that agile leaders need to provide a clear agile work
process to the teams for them to get started in a constructive way. While this
is not according to the description of an agile and self-organizing team, this is a
typical trait of groups in the Forming stage according to group development [11].
Team members are focused on dependency and inclusion when newly formed,
and need to build some initial trust before sharing opinions and questioning each



190 L. Gren and M. Lindman

other. Giving new teams a structure and directives would therefore help them in
their development as compared to trying to get them to self-organize too early. In
the results of this study, we clearly see that the agile leaders describe a need for
more guidance of newly formed agile teams as well. Not only do teams need more
guidance in their internal collaboration, but just like Wageman [17] concluded
in her studies on self-organizing teams in general, someone needs to design the
teams well also before they are deployed. This aspect seems to be largely ignored
in the agile literature. After the team is set up, the role of the leader reassembles
the leadership needed in different group development stages, which verifies their
importance and clarified the connection between the two concepts. This study
has shown that this temporal perspective of needed leadership when creating self-
organizing teams is also essential when setting up agile teams, and Wageman’s
[17] theory fits the result of this study exceptionally well. If we aim for having
only a facilitating and coaching leadership from day one, we hamper the teams’
development instead of the opposite.

The interviewees also described the more mature agile teams as aware of their
context, e.g. surrounding teams and overall company strategies, and having the
ability to tailor their own process in relation to responding to a change in require-
ments. This is at the very core of agility [24], and shows that self-organization is
a property of collaboratively mature teams. In contrast, one interviewee thought
that following the agile process was bad and thus that an agile process was
inflexible. Adapting agile methods to a large organization was described as a
balance between old and the new work methods, and therefore, there is a large
risk of adapting the old organization to the new agile structure and by this not
perform an actual agile transformation but a renaming of the existing structure.
One example would be to keep a command-and-control approach by the line
management instead of providing a structure for teams to grow and eventually
self-organize, i.e. letting team members lead when they are ready to take on
and share the leadership function more. This challenge was more stressed by our
two participants from hardware development. A key to create agile teams, as
described by our interviewees, seems to be to suggest good work structures for
teams and then let them adjust their process as the development cycle moves
along. This is a tricky balance for new agile leaders since new teams need more
structure but the appointed leaders then need to take a step back and let the
team self-organize when ready. Therefore, a mix of more directive leadership
styles in combination with consultative and coaching leadership styles, seems to
be what the successful practitioners do in practice. This is not then to be con-
fused with traditional line management control, but instead the application of
different types of support for teams guided by the end-goal of the team leading
itself.

The guidelines from the agile community have been to be a facilitator of the
process only instead of being a more directive leader [25]. The problem with
such simplified guidance to new leaders is that such behavior only works in
very special cases. With a mature team, and with good organizational support,
taking a step back, delegate and be a process facilitator is easy. The problem



What an Agile Leader Does: The Group Dynamics Perspective 191

is that becoming a leader in such a context immediately is pretty rare. There
is an awareness in practice that inexperienced teams need more guidance, but
this awareness is only in relation to agile practices [26] and not group dynamics
over time. Therefore, that explanation model of agility fails to explain why some
teams do not become agile over time even if they learn the agile practices. An
understanding of group developmental psychology provides that explanation [11],
and explains why different leadership styles and team support are needed at the
different stages. And maybe even more novel in this current study, teams need
to be designed well before they are deployed if they are to self-organize as fast
as possible [17]. This motivates the future inclusion of more group dynamics
teaching in agile courses both at companies and at universities.

5 Threats to Validity

Since leadership is a complex construct, a qualitative method was suggested
to provide deeper insights of the reality. However, with fewer participants is
becomes more difficult to generalize to a larger population, which should be
done with care for our study. The selection of a large variety of interviewees
from various organizational settings in the sample, is one major strength of the
study, but conclusions from our two participants from hardware development
should of course be drawn with even more care and only seen a small additional
comparison. The diverse sample with regards to companies provides a broad
view of experiences from practitioners working with an agile approach in differ-
ent stages of its implementation. A high risk in qualitative studies is that our
interpretations of what the interviewees said could of course be erroneous and
prone to confirmation bias. A way to counter such a threat was to be transpar-
ent in the description of our research method, and to be transparent with what
quotes we believe supported our claims. In the analysis, we acknowledged our
previous knowledge of group dynamics, which many of our participants did not
have. Our participants could have a different perception of the constructs under
investigation, but as researchers from different areas, one with and one with-
out previous knowledge of agile but both with rigorous experience of leadership,
we believe that this combination was advantageous for the analysis. For valida-
tion of interpretations and citations, feedback from the interviewees might have
improved the quality of the analysis. We recommend that procedure for upcom-
ing studies in the area. We also acknowledge that having a mix of two languages
(English and Swedish), and conducting interviews in English with non-native
speakers also threatens the validity of this study due to difficulty in obtaining
exact translations between languages.

6 Conclusion and Future Work

This paper set out to investigate what challenges appointed agile leaders see
in relation to group dynamics. Through a qualitative method of interviews and
a thematic analysis, we have found that leader adaptability to team maturity,



192 L. Gren and M. Lindman

the careful design of new teams, and a continuous balance between traditional
and new work principles are all essential to the success of an agile transforma-
tion. These findings are an important contribution to both research and practice
since it gives an in-depth view of leadership challenges of group dynamics in agile
transformations at different scales. In terms of future research, we particularly
suggest more use of qualitative research methods both when studying leadership
in engineering, but also to apply narrative analysis [27] to large agile transfor-
mations, since analyzing the complete transition from a waterfall process to an
agile approach has not been done in its entirety. We believe the narrative anal-
ysis method is underused in software engineering research and fits well to the
study of organizational changes over time.

Acknowledgment. We would like to thank all the participants and everyone who
helped us with making this study possible, and we would like to acknowledge Jennifer
Strand and Petra Bostrom specifically for their excellent support.

References

1. Dyba, T., Dingsgyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50(9), 833-859 (2008)

2. Melnik, G., Maurer, F.: Comparative analysis of job satisfaction in agile and non-
agile software development teams. In: Abrahamsson, P., Marchesi, M., Succi, G.
(eds.) XP 2006. LNCS, vol. 4044, pp. 32-42. Springer, Heidelberg (2006). https://
doi.org/10.1007/11774129_4

3. Serrador, P., Pinto, J.K.: Does agile work? - a quantitative analysis of agile project
success. Int. J. Proj. Manag. 33(5), 1040-1051 (2015)

4. Lenberg, P., Feldt, R., Wallgren, L.G.: Human factors related challenges in software
engineering - an industrial perspective. In: Begel, A., Prikladnicki, R., Dittrich, Y.,
de Souza, C., Sarma, A., Athavale, S. (eds.) Proceedings of the 8th International
Workshop on Cooperative and Human Aspects of Software Engineering, pp. 43-49.
IEEE (2015)

5. Hogg, M.A., van Knippenberg, D.: Social identity and leadership processes in
groups. Adv. Exp. Soc. Psychol. 35, 1-52 (2003)

6. Hogg, M.A., Vaughan, G.M.: Social Psychology, 7th edn. Pearson, Harlow (2014)

7. Kozlowski, S.W., Watola, D.J.; Jensen, J.M., Kim, B.H., Botero, I.C.: Developing
adaptive teams: a theory of dynamic team leadership. In: Salas, E., Goodwin,
G.F., Burke, C.S. (eds.) Team Effectiveness in Complex Organizations: Cross-
Disciplinary Perspectives and Approaches, pp. 113-155. Routledge, New York
(2009)

8. Hersey, P., Blanchard, K.H., Natemeyer, W.E.: Situational leadership, perception,
and the impact of power. Group. Organ. Manag. 4(4), 418-428 (1979)

9. Schein, E.: Organizational Culture and Leadership, 4th edn. Jossey-Bass, San Fran-
cisco (2010)

10. Northouse, P.: Leadership: Theory and Practice, 5th edn. Sage, Thousand Oaks
(2010)

11. Tuckman, B., Jensen, M.: Stages of small-group development revisited. Group
Organ. Manag. 2(4), 419-427 (1977)


https://doi.org/10.1007/11774129_4
https://doi.org/10.1007/11774129_4

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

What an Agile Leader Does: The Group Dynamics Perspective 193

Gren, L., Torkar, R., Feldt, R.: Group development and group maturity when
building agile teams: a qualitative and quantitative investigation at eight large
companies. J. Syst. Softw. 124, 104-119 (2017)

Hodgson, D., Briand, L.: Controlling the uncontrollable: ‘agile’ teams and illusions
of autonomy in creative work. Work Employ Soc. 27(2), 308-325 (2013)

Spiegler, S.V., Heinecke, C., Wagner, S.: Leadership gap in agile teams: how teams
and scrum masters mature. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019.
LNBIP, vol. 355, pp. 37-52. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-19034-7_3

Millikin, J.P., Hom, P.W., Manz, C.C.: Self-management competencies in self-
managing teams: their impact on multi-team system productivity. Leadersh. Q.
21(5), 687-702 (2010)

Parris, D.L., Peachey, J.W.: A systematic literature review of servant leadership
theory in organizational contexts. J. Bus. Ethics 113(3), 377-393 (2013)
Wageman, R.: How leaders foster self-managing team effectiveness: design choices
versus hands-on coaching. Organ. Sci. 12(5), 559-577 (2001)

Wageman, R.: Critical success factors for creating superb self-managing teams.
Organ. Dyn. 26(1), 49-61 (1997)

Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77-101 (2006)

Dahlberg, K., Dahlberg, H., Nystrom, M.: Reflective Lifeworld Research, 2nd edn.
Studentlitteratur, Lund (2008)

Saldana, J.: The Coding Manual for Qualitative Researchers, 3rd edn. Sage Pub-
lications, Thousand Oaks (2015)

Willig, C.: Introducing Qualitative Research in Psychology. McGraw-Hill Educa-
tion, Berkshire (2013)

Gren, L., Goldman, A., Jacobsson, C.: Agile ways of working: a team maturity
perspective. J. Softw. Evol. Process (in press)

Zieris, F., Salinger, S.: Doing scrum rather than being agile: a case study on
actual nearshoring practices. In: Proceedings of the 8th International Conference
on Global Software Engineering (ICGSE), pp. 144-153. IEEE (2013)

Rising, L., Janoff, N.S.: The scrum software development process for small teams.
IEEE Softw. 17(4), 26-32 (2000)

Adkins, L.: Coaching Agile Teams: A Companion for ScrumMasters, Agile Coaches,
and Project Managers in Transition. Pearson Education, Boston (2010)

Smith, B., Sparkes, A.C.: Narrative inquiry in psychology: exploring the tensions
within. Qual. Res. Psychol. 3(3), 169-192 (2006)


https://doi.org/10.1007/978-3-030-19034-7_3
https://doi.org/10.1007/978-3-030-19034-7_3

194 L. Gren and M. Lindman

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

“This is Just a Prototype’’: How Ethics Are
Ignored in Software Startup-Like Environments

Ville Vakkuri® @, Kai-Kristian Kemell @, Marianna Jantunen®,
and Pekka Abrahamsson

University of Jyviskyld, PO Box 35, 40014 Jyviskyld, Finland
{ville.vakkuri,kai-kristian.o.kemell, pekka.abrahamsson}@jyu.fi,
marianna.jantunen@gmail.com

Abstract. Artificial Intelligence (AI) solutions are becoming increasingly com-
mon in software development endeavors, and consequently exert a growing soci-
etal influence as well. Due to their unique nature, Al based systems influence a
wide range of stakeholders with or without their consent, and thus the develop-
ment of these systems necessitates a higher degree of ethical consideration than is
currently carried out in most cases. Various practical examples of Al failures have
also highlighted this need. However, there is only limited research on methods
and tools for implementing Al ethics in software development, and we currently
have little knowledge of the state of practice. In this study, we explore the state of
the art in startup-like environments where majority of the Al software today gets
developed. Based on a multiple case study, we discuss the current state of prac-
tice and highlight issues. The cases underline the complete ignorance of ethical
consideration in Al endeavors. We also outline existing good practices that can
already support the implementation of Al ethics, such as documentation and error
handling.

Keywords: Artificial intelligence - Al ethics - Al development - Practices -
Responsibility - Accountability - Transparency - Case study

1 Introduction

Al systems have become increasingly common in software engineering projects [1].
While much of the media attention is on flashier systems such as autonomous vehicles,
less high-profile Al systems such as decision-making support systems have become
increasingly widespread in various organizations. Al systems often operate under the
surface in the form of e.g. recommendation algorithms, making the high-profile systems
in the middle of the media hype only the tip of the iceberg.

Over the last two decades, progress on Al has been accelerating rapidly. Al systems
are now widely used in various areas and for various purposes. Examples include medical
systems [2], law enforcement [3], and manufacturing industries and industry 4.0 [4],

An early version of this paper was presented in the 20th International Conference on Product-
Focused Software Process Improvement (Profes 2019)

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 195-210, 2020.
https://doi.org/10.1007/978-3-030-49392-9_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_13&domain=pdf
http://orcid.org/0000-0002-1550-1110
http://orcid.org/0000-0002-0225-4560
http://orcid.org/0000-0002-8991-150X
http://orcid.org/0000-0002-4360-2226
https://doi.org/10.1007/978-3-030-49392-9_13

196 V. Vakkuri et al.

among numerous others. As the field progresses, the already impressive potential of Al
systems becomes even larger, including applications such as general Al systems, the
likes of which are already being developed by the technology giants such as Alphabet.
It is exactly because of this impressive potential and impact of these systems, especially
in the future, that their potential negative impacts should also discussed more.

Al systems are ultimately still software. They are affected by largely the same require-
ments as any other software system. Al development projects are still for the most part
conventional software engineering, with machine learning related tasks only comprising
a small portion of these projects [5].

However, Al systems are unique in terms of their effects on various stakeholders to
the point where they can even exert society-wide influence. Moreover, these stakeholders
often have little power in opting out of using these systems. E.g. it is difficult to avoid
having a firm filter your job application using Al or trying to avoid being monitored
using Al-based surveillance systems if such systems are in place in the area.

Various system failures have already highlighted some of the potential issues these
systems can have in practice. Past incidents that have received global media coverage,
even smaller incidents can be costly for the affected organization(s). For example, the
national Finnish broadcasting company, Yle', utilized AI for moderation purposes in its
services. Having already changed its processes to suit the automation of the moderation,
the organization ultimately ran into problems with the Al moderator system. Though
the software was working fine on the technical level, the socio-ethical issues forced the
organization to revert back to human moderators.

Many of these issues are ultimately rooted in ethics. Al ethics has thus become a new
non-functional requirement to address; an -ility among the likes of quality, maintain-
ability, and scalability. Existing methods have focused on tackling these functional and
non-functional requirements. However, no such methods currently exist for Al ethics
[6], with the existing tools and methods largely being technical and limited to narrow
contexts in ML as opposed to being project-level methods.

In the absence of methods, how are ethics currently implemented? Much of the
current literature in the area has been theoretical, and our understanding of the state
of practice in Al ethics is currently lacking. [6] Al ethics literature discusses various
aspects of Al ethics that should be taken into account, but bridging the gap between
research and practice in the area remains an on-going challenge [7, 8]. Guidelines for
implementing Al ethics exist, but their effect on the start of practice remains unknown.

Thus, to begin bridging this gap in the area, we conduct an empirical study to help us
understand the current state of practice. We do so by means of a multiple case study of
three projects focusing on healthcare systems. The goal of this study is two-fold: (1) to
help us understand the current state of practice in Al ethics; and (2) to discover existing
good practices that might help in implementing Al ethics. Out of these two goals, the
first is a theoretical contribution while the second one is a practical one. The specific
research question of the paper is as follows:

RQ: how are Al ethics taken into consideration in software engineering projects
when they are not formally considered?

1 https://yle.fifuutiset/3-11158701.


https://yle.fi/uutiset/3-11158701

“This is Just a Prototype”: How Ethics Are Ignored in Software 197

2 Related Work: The Current State of AI Ethics

Ethics in software development and interactive systems design in general has a history
of over 30 years. For example, Bynum [9] introduced the idea of adapting human val-
ues in design before the rise of human computer interaction and other human-centric
paradigms. Theoretically grounded approaches such as Value Sensitive Design (VSD)
and its variants have provided tools to design technology that takes into account human
values in the design process [10, 11].

As more progress is made in the field of Al systems, old theoretical scenarios in Al
ethics are slowly becoming reality. This calls for new methods to manage the ethical
issues arising from these new systems [7, 12]. Indeed, Vallach and Allen [12] argue
that AT and Al-based systems produce new requirements to consider. Specifically, they
propose that designers implicitly embed values in the technologies they create [12]. Al
and other complex systems force designers to consider what kind of values are embedded
in the technologies and also how the practical implementation of these values could be
carried out and how these systems could be governed [13].

Yet, little is currently known about software development practices and methods
in the context of Al ethics, as empirical studies in the area are scarce. Our results
from an existing study suggest that Al ethics are seldom formally implemented in SE
projects, [14]. Similarly, there are currently no project-level methods that could aid in
implementing Al ethics [6]. On the other hand, various tools that can support specific
elements of Al ethics do exist, such as tools for managing machine learning [6]. However,
they do not help developers implement Al ethics in general.

In this light, it can be said that Al ethics has hardly been incorporated into main-
stream SE literature yet. The reason why Al Ethics has received little attention in the
prior engineering literature is three-fold: 1) Prior research has been predominantly philo-
sophical, 2) the field has not sensed the need to address ethical concerns and 3) thus it
has not been part of the education system.

Though some practice-focused research does exist (e.g. [15]), most of the research on
Al ethics has been conceptual and theoretical in nature. These studies have e.g. focused
on defining Al ethics in a practical manner through various constructs in the form of
values. For the time being, this discussion on defining Al ethics has come to center
around four values: transparency [16, 17], accountability [8, 16], responsibility [16],
and fairness (e.g. [18]). Not all four of these values are universally agreed to form the
core of Al ethics, however, as we discuss in the following section while presenting our
research framework.

Following various real-life incidents out on the field (e.g. Amazon’s biased recruit-
ment AI%), Al ethics has also begun to spawn public discussion. This has led to govern-
ments, standardization institutions, and practitioner organizations reacting by producing
their own demands and guidelines for involving ethics into Al development, with many
standards and regulations in the works. Countries such as France [19] and Germany [20]
have emphasized the role of ethics in Al, and on an international level the EU began

2 https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-sec
ret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MKOS8G.


https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

198 V. Vakkuri et al.

to draft its own Al ethics guidelines which were presented in April 2019 [21]. More-
over, ISO has founded its own ethical, trustworthy Al in ISO/IEC JTC 1/SC 42 Artificial
intelligence subcommittee [22]. Finally, some larger practitioner organizations have also
presented their own guidelines concerning ethics in Al (e.g. Google [23] and Microsoft
[24] guidelines).

Thus far, these various attempts to bring this on-going academic discussion out on
the field have been primarily made in the form of guidelines and principles. Out of these
guidelines, perhaps the most prominent ones up until now have been the IEEE guidelines
for Ethically Aligned Design (EAD), born from the IEEE Global Initiative on Ethics of
Autonomous and Intelligent Systems alongside its IEEE P7000™ Standards Working
Groups, which were branded under the concept of EAD [8].

Existing literature has shown us that guidelines and principles in the field of ICT
ethics do not seem to be effective. Mittelstadt [25] argue that Al developers lack the
professional norms and methods to translate principles into practice in successful way.
To this end, McNamara et al. [26] also argue based on empirical data that the ACM
ethical guidelines® had ultimately had very little impact on developers, who had not
changed their ways of working at all. In this light, this is likely to be the case with the
aforementioned Al ethics guidelines as well, as Mittelstadt suggest [25]. This notion is
further supported by Morley et al. [6] who argue that developers focused on practicality
are unlikely to adopt them when the competitive advantage of EAD is unclear.

3 Research Model

To assistin the data collection and analysis in this study, we devised a research framework
based on prominent literature in the area. This research framework and the justifications
behind it are further discussed in an existing paper [27] (Fig. 1).

2.a 2. 3. 3.a
1| Accountability Responsibility ~

>

_—
4. Ethics ¢ 5. Ethics for
in Design Il- < Design(ers)

l.a - 1.Transparency — 1.b

Fig. 1. Research framework

As the basis of the framework, we utilized the ART principles of Dignum [16],
which consist of Accountability, Responsibility, and Transparency. These have been
central constructs in the area, having also been featured in the EAD guidelines of IEEE.

Transparency is required for accountability and responsibility (line 1.c), as we must
understand why the system acts in a certain fashion, as well as who made what decisions
during development in order to establish accountability [17]. Whereas accountability

3 ACM Code of Ethics and Professional Conduct. https://www.acm.org/code-of-ethics.


https://www.acm.org/code-of-ethics

“This is Just a Prototype”: How Ethics Are Ignored in Software 199

can be considered to be externally motivated, closely related but separate construct
responsibility is internally motivated. The concept of accountability holds a key role in
aiming to prevent misuse of Al and in supporting wellbeing through AI [8].

Accountability refers to determining who is accountable or liable for the decisions
made by the Al Dignum [16] in their recent works defines accountability to be the
explanation and justification of one’s decisions and one’s actions to the relevant stake-
holders. In the context of this research framework, accountability is used not only in
the context of systems, but also in a more general sense. We consider, e.g., how various
accountability issues (legal, social) were considered during development.

Dignum [16] defines responsibility as a chain of responsibility that links the actions
of the systems to all the decisions made by the stakeholders. We consider it to be the least
accurately defined part of the ART model, and thus have taken a more comprehensive
approach to it in our research framework. According to the EAD guidelines, responsi-
bility can be considered to be an attitude or a moral obligation for acting responsibly [8]
A simplified way of approaching responsibility would be for a developer to ask oneself
e.g. “would I be fine with using my own system?”.

In addition to the ART principles, we utilized the three Al ethics categories presented
by Dignum [28] to make these constructs more practical. Dignum suggests that Al ethics
can be divided into:

e Ethics by Design (integration of ethical reasoning capabilities as a part of the behaviour
of artificial autonomous system, e.g. ethical robots);

e Ethics in Design (the regulatory and engineering methods supporting ethical impli-
cations of Al systems); and

e Ethics for Design: (codes of conduct, standards, and certification processes that ensure
the integrity of developers and users) [28].

In this paper, we focus on the ethically aligned development process, and therefore
the last two categories were included into the research framework.

Finally, aspects of commitment were utilized in the framework to aid data analysis.
Specifically, we utilized the commitment net model of Abrahamsson [29] to approach
the implementation of ethics into practice and have an explaining theoretical framework
to examine ethics role to developers. From this model, we focused on concerns and
actions. Concerns were analyzed to understand what ethical issues were of interest to the
developers. Actions were then studied to understand how these concerns were actually
tackled, or whether they were tackled at all.

In commitment net model, actions are connected to concerns because when actions
are taken, they are always driven from concerns [29]. On the other hand, however,
concerns can exist without any actions taken to address them. The dynamic between
actions and concerns was considered a tangible way to approach the focus of this study:
practices for implementing Al ethics. Developers actions could be likened to practices
that were taking during the development. On the other hand, analyzing the concerns
that developers have opens a view to understanding e.g. whether the developers perhaps
wanted to implement ethics but were unable to do so.



200 V. Vakkuri et al.

4 Study Design

This section is split into three subsections. First, we discuss the cases of the case study.
In the second and third ones we discuss the data collection and analysis, respectively.

4.1 Cases

We conducted a multiple case study featuring three case projects. In all of the case
projects, Al systems were being developed for the healthcare sector. These cases are
outlined in the table below (Table 1). We chose to utilize a qualitative case study approach
due to the exploratory nature of the topic, as the research area is novel as far as empirical
studies are concerned.

Healthcare cases were selected due to the assumption that ethical consideration
would be more common in healthcare-related projects due to the nature of the area in
closely dealing with human well-being (e.g. the tradition of bio and medical ethics).
Indeed, healthcare systems can, for example, influence the decisions made by doctors or
their patients related to the health of the patients. Moreover, due to the emphasis on tax-
funded public healthcare in Finland, where the cases were from, the area is particularly
regulated. These regulations impose some ethical requirements on software systems as
well, especially in relation to handling patient data, which is considered particularly
sensitive data from a legal point of view.

In the paper title, we characterize these case projects as being startup-like because
the projects shared various characteristics typically associated with software startups.
First, agile methods were commonly utilized in the projects. Secondly, the projects
were all characterized by notable time pressure. Thirdly, the projects operated with
scarce resources. Fourthly, the cases were centered around the development of functional
prototypes, which were intended to as proof-of-concept type artifacts. However, the
prototypes were being developed with real customers and tested in practice. Finally, the
projects exhibited exploratory approaches that focused on experimentation.

Currently, much of the on-going Al development is happening in startups [1], even
if the multinational organizations receive much media coverage in relation to Al. In
characterizing them as startup-like, we consider them to be representative of the current
Al development projects.

Table 1. Descriptions of each case

Case | Example Font size and style

A Statistical tool for detecting social Data Analyst [R1], Consultant [R2],
marginalization Project Coordinator [R3]

B Speech recognition and NLP based tool for | Developer [R4], Developer [R5],
diagnostics Project Manager [R6]

C NLP based tool for indoor navigation Developer [R7], Developer [R8]




“This is Just a Prototype”: How Ethics Are Ignored in Software 201

4.2 Data Collection

Data from the cases were collected using semi-structured interviews [30]. This interview
strategy enabled the interviews to be conducted in a way that allowed for flexibility
from the interview questions, but without steering too far from the topic. The interview
instrument used in the interviews can be found externally as a reference*. All interviews
were conducted as F2F interviews and the audio was recorded for transcription. The
analysis was conducted using the transcripts. The interviews were conducted in Finnish.
This was done so that the respondents would not give shorter responses due to being
uncomfortable with communicating in English, especially while being on record.

The respondents from the cases were either developers or managers. As we wanted to
focus on development practices and project issues, we focused on the personnel directly
involved with the practical development issues in the projects. The respondents are
outlined in the table in the previous subsection. In terms of experience, respondents 4,
5,7, and 8 were junior developers. Respondents 3 and 6, on the other hand, were senior
developers. Respondent 1 was a junior data scientist.

4.3 Data Analysis

We analyzed the data in two phases. First, we utilized a grounded theory (Heath [31])
inspired approach to code the transcripts quote by quote for each interview. This process
was carried out iteratively as the list of codes was updated during the process. This
approach was chosen due to the lack of existing studies on the current state of practice
in the area.

In the second phase, we utilized the commitment net model of Abrahamsson [29]
to then further analyze and categorize the coded content. We utilized the model by
focusing on the concerns and actions of the developers. The concerns and actions of
each respondent were compared across cases in search of recurring concerns and actions
between cases and respondents. By evaluating the relationships between the actions taken
in development the development process and the concerns of the developers, we could
better understand the motivation behind the actions. Similarly, we could also see which
concerns did not lead to any actions, pointing to a lack of commitment towards tackling
those concerns.

The data were then compared with the research framework again to evaluate how Al
ethics were implemented in each project. Actions were the emphasis here, as the focus
of this study was on tangible implementation of Al ethics and how it was carried out in
terms of tools, practices, or methods. However, we also highlighted interesting findings
in relation to the mere concerns related to Al ethics.

S Empirical Results

This section is split into four subsections. The first three feature the analysis split
between the accountability, responsibility and transparency constructs. The final sub-
section summarizes the analysis. We highlight our findings as Primary Empirical Con-
clusions (PECs). During the analysis, we use quotes from the interviews to elaborate on

4 http://users.jyu.fi/~vimavakk/AIDevQuestionnaire.


http://users.jyu.fi/%7evimavakk/AIDevQuestionnaire

202 V. Vakkuri et al.

the topic at hand. However, it should be noted that the conclusions are not drawn merely
based on these individual citations.

5.1 Responsibility

The concerns of the developers related to responsibility were varied, but ultimately
detached from practice as far as concerns related to Al ethics were considered. The
concerns the developers discussed in relation to responsibility were simply very practical
concerns related to internal project matters or delivering a high quality product:

“Responsibility on reporting and keeping the project on schedule” (R6)

PEC1. Developers feel most responsibility towards tackling problems related to
software development, such as finding bugs, meeting project goals.

On the other hand, as the interviews progressed, the developers did also express
some concerns towards various ethical issues. However, these concerns were detached
from their current work. They did not affect the way they worked, and the developers
felt that these types of concerns were not relevant during development. The presence of
concerns in the absence of actions to address those concerns pointed towards a lack of
commitment on this front.

“It is just a prototype” (R8)
“I do my best” (R5)

“But this is a prototype, an experiment, just to show people that you can do this
type of thing. This doesn’t really have any responsibility issues in it.” (R1)

PEC2. On a personal level, developers are concerned about the ethical aspects of
product development. However, little is done to tackle these concerns.

Furthermore, it was evident that in none of the cases had the hypothetical effects of
the system on the stakeholders been discussed. To give a practical example, a system
potentially affecting memory illness diagnoses clearly has various effects on its potential
users, especially when the test can be taken without supervision. Yet, the developers of
this particular tool also felt that their users would not be curious about the workings of
the system. They considered it sufficient if the responsibility was outsourced to the user
and it was underlined that the system does not make the diagnosis but simply advises
doctors.

The developers did not consider the potential harm of the system past the tangible,
physical harm potential of the systems. For example, stress or other negative effects on
users and other stakeholders were not considered. In all three cases, the respondents did
not consider the system to have had any potential of causing physical harm, and thus did
not consider the system to have any notable harm potential at all.

“Nobody wants to listen to ethics-related technical stuff. No five hour lectures
about it. It’s not relevant to the users” (R5)

“I don’t really understand what it [responsibility] has to do with product
development. We developers are all responsible.” (R7)



“This is Just a Prototype”: How Ethics Are Ignored in Software 203

“What could it affect... the distribution of funds in a region, or it could result in
a school taking useless action... it does have its own risks, but no one is going to
die because of it” (R1)

PEC3. Responsibility of developers is unclear.

5.2 Transparency

Case A highlighted the potential importance of mathematical expertise. The team had
internal mathematical capabilities that allowed them to develop their own algorithms, as
well as to better understand third party components, in order to have achieve a higher
standard of transparency. They utilized algorithms they were familiar with and which
they understood on an in-depth level. Thus, the team considered themselves to be able
to understand why the system made certain decisions in certain situations. This under-
lines the importance of mathematical skills in preventing the birth of black boxes in Al
development.

“In that sense it’s not really a black box as we can understand what’s going on
in there just fine, and we can show the nodes and what affects them. It’s a very
transparent algorithm.” (R3)

The other two cases utilized existing Al solutions. They did not have an in-depth
understanding of the technologies they were utilizing, which resulted in their systems
being (partially) black boxes. They understood any components created by the team but
did not have a full understanding of the third party components they had used as a base.
This presents problems for feature traceability.

PECA4. Black box systems are a typical issue in Al development.

Even though transparency of algorithms and data was not present in two of the cases,
the developers in case B nonetheless acknowledged its potential importance However, as
it was not considered a formal requirement in the projects, the managers did not devote
resources towards pursuing it. Even in case A, transparency was not produced as a result
of ethical goals but out of business reasons.

“We have talked about the risks of decision-making support systems but it doesn’t
really affect what we do” (RS)

PECS. Developers recognize transparency as a goal, but it is not formally pursued.

On the other hand, in relation to transparency of systems development, all three
cases displayed transparency. By having formal decision-making strategies, they were
able to keep track of higher-level decisions related to the system. Through proper doc-
umentation, they were able to keep track of decisions made on the code level. Version
control also assisted in this regard, making it clear who made what changes and when
in retrospect. There were thus various existing practices that produced transparency
of systems development. Two of the cases also acknowledged the effects of team size
on transparency of systems development. They noted that, in addition to documentation
practices, the small team size itself made it easy to keep track of the actions of individual
developers even in an ad hoc manner.



204 V. Vakkuri et al.

PEC6. Established SE practices, such as code documentation and code review,
support transparency of systems development.

5.3 Accountability

Some aspects of accountability were clear points of focus in the projects, namely ones
related to security in terms of general information security as well as data management.
The respondents were aware of being in possession of personal data, given that they
developed healthcare solutions, and were concerned with keeping it secure. They men-
tioned taking measures to keep the data secure from potentially malicious actors, and
they were aware that they would have to take measures to act in accordance with laws
and regulations in the area. However, in some cases they had not done so yet.

“It’s really important how you handle any kind of data, that you preserve it cor-
rectly, among researchers, and don’t hand it out to any government actors. For
example, many of the data packages have kind of interesting data and it can’t get
into the wrong hands. I personally can’t see any way to harm anyone with the data
we have though” (R2).

“We haven’t really paid much attention to the [data] safety aspects yet... it hasn’t
really been a main focus. There’s probably a lot of things we have to take into
account [eventually]” (RS).

The ethical concerns they had in relation to accountability were in general largely
related to existing areas of focus in software development. For example, error handling
was one aspect of accountability the respondents were particularly concerned with.
This was tied with their goal of making quality software, which they considered their
responsibility as professionals. The respondents could, to this end, discuss what tangible
practices they utilized to deal with error handling.

PEC7. Developers feel accountable for error handling and have the means to deal
with it.

However, error handling was largely considered from the point of view of writing
code and testing it in a laboratory setting. I.e. the system was considered error free if
there were no red lines in the code in the IDE during development. Only case company
B discussed measures they had taken to monitor errors in use. Furthermore, potential
misuse (e.g. a prankster drawing a horizontal white line on the pavement to intentionally
confuse autonomous vehicles) and error scenarios during the operational life of the
system had not been actively considered in any of the case projects.

“The calculations are made in the algorithms, so it doesn’t really make mistakes”
(R2)

PECS. Product misuse and error scenarios are only considered during develop-
ment. They are not considered in terms of the future operational life of the system
out on the field.



“This is Just a Prototype”: How Ethics Are Ignored in Software 205

Due to the nature of machine learning, Al systems learn as they are taught with
new data or as they collect it themselves while operating out on the field. From this
arises the potential issue of unexpected behavior as a result of machine learning. None
of the respondents had made plans to tackle potential unexpected behavior during the
operational life of their system, should such behavior arise. In only one of the projects
was the possibility directly acknowledged:

“We just put it up for end-users to test and note that this is still being developed”
(R7).

PEC9. Developers do not have plans to deal with unexpected behavior of the
system resulting from e.g. machine learning or the future expansion of the use
context of the system.

5.4 Summary of Findings

Past the ART constructs, we highlight some commonalities between the cases on a
more general level while summarizing our findings. In none of the cases were ethics
implemented by following a formal method or tool, nor were ethical issues considered
directly as ethical issues. Rather, any ethical issues tackled in the projects were tack-
led for practical reasons (e.g. error free software is beneficial from the point of view
of customer relations). Nonetheless, some of the ethical issues such as error handling
and transparency of systems development were tackled in a systematic manner through
existing software engineering practices such as code documentation and version control.

On the other hand, though ethics were not taken into consideration on a project level,
the respondents still exhibited some concern towards the potential socio-ethical issues
in the systems. When prompted, they were able to come up with various negative effects
the systems could have on different stakeholders. They considered these to be potential
real issues, but did not have a way to address these concerns in the absence of tools,
practices, and methods for doing so. Moreover, they seemed to realize these potential
issues only after being directly asked about them in the interviews. This also points to a
lack of tools to aid in ethical analyses.

6 Discussion

In this section, we have collected all the Primary Empirical Conclusions (PEC) outlined
in preceding analysis section into Table 2. We relate each of these findings to existing
literature and discuss their implications in this section. We classify each of these PECs
based on their contribution into either novel findings, findings that (empirically) validated
existing literature, or findings that contradict existing literature.

Many of our findings underline a gap between research and practice in the area.
Whereas research on Al ethics alongside various guidelines devised by researchers [8]
and practitioners [23, 24] alike has discussed various ethical goals for Al systems, these
goals have not been widely adopted out on the field. In this sense, we consider some of
our findings (PECs 4, 5, 8, and 9) to contradict existing literature.

For example, extant literature has highlighted the importance of transparency of algo-
rithms and data [15—-17]. Without understanding how the system works, it is impossible



206 V. Vakkuri et al.

Table 2. List of Primary Empirical Conclusions (PECs)

# | Theoretical component

Description

Contribution

1 | Responsibility

Developers feel most
responsibility towards tackling
problems related to software
development, such as finding
bugs, meeting project goals

Empirical validation

2 | Responsibility

On a personal level, developers
are concerned about the ethical
aspects of product
development. However, little is
done to tackle these concerns

Novel

3 | Responsibility

Responsibility of developers is
unclear

Novel

4 | Transparency

Black box systems are a typical
issue in Al development

Empirical validation

5 | Transparency

Developers recognize
transparency as a goal, but it is
not formally pursued

Contradicts existing literature

6 | Transparency

Established SE practices, such
as code documentation and
code review, support
transparency of systems
development

Empirical validation

7 | Accountability

Developers feel accountable for
error handling and have the
means to deal with it

Empirical validation

8 | Accountability

Product misuse and error
scenarios are only considered
during development. They are
not considered in terms of the
future operational life of the
system out on the field

Contradicts existing literature

9 | Accountability

Developers do not have plans to
deal with unexpected behavior
of the system resulting from
e.g. machine learning or the
future expansion of the use
context of the system

Contradicts existing literature

to establish why it malfunctioned in a certain situation, which may e.g. be pivotal in
understanding the causes of an accident that resulted in material damage [15]. Our find-
ings point towards transparency being largely ignored as a goal (PECS5). Existing system



“This is Just a Prototype”: How Ethics Are Ignored in Software 207

components are utilized as black boxes, and developers do not see this as a notable prob-
lem (PEC4). We consider PECS5 to contradict existing literature in that existing literature
has, on multiple occasions, highlighted the importance of transparency in Al systems.
Yet, out on the field, this importance does not seem to be recognized to the point where
it would result in changing development practices.

The situation is similar for tackling potential misuse of the systems, error han-
dling during system operations, and handling unexpected system behavior (PEC8-9).
These goals are included into the IEEE EAD guidelines [8]. However, none of the case
companies took any measures to address these potential issues.

On a further note of transparency, however, the lack of emphasis placed on it is also
curious in relation to feature traceability in SE. For decades, understanding the inner
workings of the system was considered key in any SE endeavor. Yet, in the context of Al
systems, the long-standing goal of feature traceability seems to be waning. Our findings
point towards this being at least partially a result of a lack of mathematical understand-
ing, as the one case company that considered their system to be fully transparent also
noted that they fully understood the mathematics behind the algorithms they utilized. In
using existing components in their systems, developers may not always understand the
algorithms in these components. Indeed, in this vein, [32] noted that simply seeing the
code is not enough if the algorithm is not understood, or the system is not understood as
a whole.

Though we discovered various examples of ethics not being implemented, we also
discovered that various existing and established SE practices can be used to implement
Al ethics. Documentation, version control, and project management practices such as
meeting transcripts produce transparency of systems development by tracking actions
and decision-making (PEC6). Similarly, software quality practices help in error handling
also in the context of Al ethics (PEC7), although they do not specifically account for the
errors autonomous systems may face while operating out on the field. While discussing
responsibility with the respondents, we also discovered that most of their responsibil-
ity was related to producing quality software and meeting project requirements. This
validates existing literature in the area of SPI (e.g. Unterkalmsteiner, [33]).

Notably, we also discovered that the developers had ethical concerns towards their
systems, which is a novel finding in this context (PEC2). Little is currently known about
the state of practice out on the field, although a recent version of the EAD guidelines
speculated about a gap in the area, which our findings support in relation to most aspects
of Al ethics. Despite Al ethics largely not being implemented, our findings point towards
it partially being a result of a lack of formal methods and tools to implement it.

In our data, the reason given by multiple respondents for not actively considering eth-
ical issues was that they were developing a prototype. However, prototypes do influence
the final product or service developed based by them, as shown by existing studies [34].
Al ethical issues should be tackled during earlier stages of development as well, seeing
as many of them are higher-level design decisions (such as how to carry out machine
learning in the system [15]), which can be difficult to undo later.

Following this study, as well as a past case study [14], we suggest that future research
seek to tackle the lack of methods and tooling in the area. Though developers may be
concerned about ethical issues, they lack the means to address these concerns. On the



208 V. Vakkuri et al.

other hand, methods can also raise the awareness of developers in relation to Al ethics,
creating concerns where there now are none. In creating these methods, we suggest
exploring existing practices that can be used as is or tailored to implement Al ethics, as
we have discussed here.

Given the amount of activity in Al ethics currently, with many governmental actors
drafting their own Al ethics guidelines, likely followed by regulations, methods and tools
will likely have practical demand in the future. Thus, even if one barrier to implementing
Al ethics is currently the fact that it is seldom considered a requirement on a project
level, regulations and laws can force organizations to take ethics into account. This would
inevitably result in a demand for methods in this area, as well as the birth of various
in-house ones.

Finally, in terms of limitations, the most notable limitations of the study stem from
the data and the research approach. The qualitative multiple case study approach always
poses problems for the generalizability of the data. We acknowledge this as a limitation,
although we also refer to Eisenhardt [35] in arguing in favor of qualitative case studies,
especially in the case of novel research areas. Al ethics, as far as empirical data goes, is
a novel area of research. Moreover, the multiple case study approach adds some further
validity to the data, as we do not base our arguments on a single case. Nonetheless, another
limitation in the data is also that all the cases were based on Finland. For example, the
implementation of Al ethics can be more of a focus in US-based companies, as much of
the current discussion on Al ethics also originates from the US.

One other limitation in the data is that the interviews were conducted in Finnish.
The constructs such as transparency may not carry the same connotations in Finnish as
they do in English. This is especially the case with accountability and responsibility,
which may not translate in a straightforward manner. However, during the interviews,
we sought to clear any misunderstandings related to the constructs with the respondents.

The research framework can also be argued to be a limitation. As Al ethics is a
currently active field in terms of theoretical discussion, the constructs in the area are
constantly evolving. The ART principles and EAD chosen as a basis of the framework
were, at the time of writing, some of the most prominent works in the area. The framework
ultimately presents but one way of perceiving Al ethics.

7 Conclusions and Future Work

This paper furthers our understanding of the current state of practice in the field of Al
ethics. By means of a multiple case study, we studied the way Al ethics is currently imple-
mented in practice, if it is implemented at all, when it is not formally or systematically
implemented in software engineering projects.

Our findings can be summarized through the following two key takeaways:

e Even when ethics are not particularly considered, some currently commonly used
software development practices, such as documentation, support EAD. This is also
the case with focusing on information security.

e While the developers speculate potential socioethical impacts of the resulting system,
they do not have means to address them.



“This is Just a Prototype”: How Ethics Are Ignored in Software 209

Thus, from the point of view of software engineering methods and practices, this

highlights a gap in the area. While some of the existing common practices support the
implementation of some aspects of Al ethics, there are no methods or practices that help
implement it on a project-level.

Further studies on the topic should seek to assist in the practical implementation of

Al ethics. Singular practices and especially project-level methods are needed to bridge
the gap between research and practice in the area. This lack of higher-level methods was
also highlighted in a review of tools and methods in the area [6].

References

12.
13.
14.

16.
17.

18.

19.

. D’Onfro, J.: Al 50: America’s Most Promising Artificial Intelligence Companies,

Forbes https://www.forbes.com/sites/jilliandonfro/2019/09/17/ai-50-americas-most-promis
ing-artificial-intelligence-companies/

Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, 3640 (2017)
Raaijmakers, S.: Artificial intelligence for law enforcement: challenges and opportunities.
IEEE Secur. Priv. 17(5), 74-77 (2019)

Lee, J., Davari, H., Singh, J., Pandhare, V.: Industrial artificial intelligence for industry 4.0-
based manufacturing systems. In: Manufacturing Letters, vol. 18, pp. 20-23 (2018)

. Sculley, D., et al.: Hidden technical debt in machine learning systems. Adv. Neural Inf.

Process. Syst. 2, 2503-2511 (2015)

. Morley, J., et al.: From what to how: an initial review of publicly available ai ethics tools,

methods and research to translate principles in-to practices. Preprint arXiv:1905.06876 (2019)
Charisi, V. et al.: Towards moral autonomous systems. Preprint arXiv:1703.04741 (2017)
The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. Ethically
Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intel-
ligent Systems, First Edition, IEEE. https://standards.ieee.org/content/ieee-standards/en/ind
ustry-connections/ec/autonomous-systems.html (2019)

. Bynum, T.: Flourishing ethics. Ethics Inf. Technol. 8(4), 157-173 (2006)
10.
11.

Friedman, B.: Value-sensitive design. Interactions 3(6), 16-23 (1996)

Davis, J., Nathan, L.P.: Value sensitive design: applications, adaptations, and critiques. In:
van den Hoven, J., Vermaas, P.E., van de Poel, 1. (eds.) Handbook of Ethics, Values, and Tech-
nological Design: Sources, Theory, Values and Application Domains, pp. 11-40. Springer,
Dordrecht (2015)

Allen, C., Wallach, W., Smit, I.: Why machine ethics? IEEE Intell. Syst. 21(4), 12-17 (2006)
Etzioni, A.: Incorporating ethics into artificial intelligence. J. Ethics 21(4), 403—418 (2017)

Vakkuri, V., et al.: Ethically aligned design of autonomous systems: industry viewpoint and
an empirical study. Preprint arXiv:1906.07946 (2019)

. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and

use interpretable models instead. Nat. Mach. Intell. 1, 206-215 (2019)

Dignum, V.: Responsible autonomy. Preprint arXiv:1706.02513 (2017)

Turilli, M., Floridi, L.: The ethics of information transparency. Ethics Inf. Technol. 11(2),
105-112 (2009)

Flores, A.W., Bechtel, K., Lowenkamp, C.T.: False positives, false negatives, and false anal-
yses: a rejoinder to “Machine bias: there’s software used across the country to predict future
criminals, and it’s biased against blacks”. In: Federal Probation, vol. 80(2), 38 (2016)
Villani, C., et al.: For a meaningful artificial intelligence: towards a French and European
strategy. Conseil national du numérique (2018). https://www.aiforhumanity.fr/pdfs/Missio
nVillani_Report_ ENG-VFE.pdf


https://www.forbes.com/sites/jilliandonfro/2019/09/17/ai-50-americas-most-promising-artificial-intelligence-companies/
http://arxiv.org/abs/1905.06876
http://arxiv.org/abs/1703.04741
https://standards.ieee.org/content/ieee-standards/en/industry-connections/ec/autonomous-systems.html
http://arxiv.org/abs/1906.07946
http://arxiv.org/abs/1706.02513
https://www.aiforhumanity.fr/pdfs/MissionVillani_Report_ENG-VF.pdf

210 V. Vakkuri et al.

20. German Federal Ministry of Transport and Digital Infrastructure: Automated and Con-nected
Driving (2017). https://www.bmvi.de/EN/Topics/Digital-Matters/Automated-Connected-Dri
ving/automated-and-connected-driving.html

21. AIHLEG: Ethics guidelines for trustworthy AI (2019) https://ec.europa.eu/digital-single-mar
ket/en/news/ethics-guidelines-trustworthy-ai

22. ISO/IEC JTC 1/SC 42 Artificial intelligence. https://www.iso.org/committee/6794475 .html

23. Pichai, S.: Al at Google: our principles. Blog (2018). https://www.blog.google/technology/
ai/ai-principles/

24. Microsoft (2018). Responsible bots: 10 guidelines for developers of conversational Al https://
www.microsoft.com/en-us/research/uploads/prod/2018/11/Bot_Guidelines_Nov_2018.pdf

25. Mittelstadt, B.: Principles Alone Cannot Guarantee Ethical Al In: Nature Machine Intelli-
gence (2019)

26. McNamara, A., Smith, J., Murphy-Hill, E.: Does ACM’s code of ethics change ethical decision
making in software development? In: Proceedings of the 2018 26th ACM Joint Meeting on
ESEC/FSE, pp. 729-733 (2018)

27. Vakkuri, V, Kemell, K.K., Abrahamsson, P.: Al ethics in industry: a research framework.
In: Rantanen, M., Koskinen, J (eds.) Tethics 2019: Proceedings of the Third Seminar on
Technology Ethics, CEUR Workshop Proceedings, 2505. RWTH Aachen University (2019)

28. Dignum, V.: Ethics in artificial intelligence: introduction to the special issue. Ethics Inf.
Technol. 20(1), 1-3 (2018)

29. Abrahamsson, P.: Commitment nets in software process improvement. Ann. Softw. Eng.
14(1), 407-438 (2002)

30. Galletta, A.: Mastering the Semi-structured Interview and Beyond: From Research Design to
Analysis and Publication. NYU Press, New York (2013)

31. Heath, H.: Developing a grounded theory approach: a comparison of Glaser and Strauss. Int.
J. Nurs. Stud. 41(2), 141-150 (2004)

32. Ananny, M., Crawford, K.: Seeing without knowing: limitations of the transparency ideal and
its application to algorithmic accountability. New Media Soc. 20(3), 973-989 (2018)

33. Unterkalmsteiner, M., et al.: Evaluation and measurement of software process improvement—
a systematic literature review. IEEE Trans. Softw. Eng. 38(2), 398-424 (2011)

34. Duc, A.N., Abrahamsson, P.: Minimum viable product or multiple facet product? the role
of MVP in software startups. In: International Conference on Agile Software Development,
pp. 118-130 (2016)

35. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev. 14(4),
532-550 (1989)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://www.bmvi.de/EN/Topics/Digital-Matters/Automated-Connected-Driving/automated-and-connected-driving.html
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://www.iso.org/committee/6794475.html
https://www.blog.google/technology/ai/ai-principles/
https://www.microsoft.com/en-us/research/uploads/prod/2018/11/Bot_Guidelines_Nov_2018.pdf
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Hypotheses Elicitation in Early-Stage
Software Startups Based on Cognitive
Mapping

()

Jorge Melegati and Xiaofeng Wang

Free University of Bozen-Bolzano, Bolzano, Italy
{jmelegatigoncalves,xiaofeng.wang}@unibz.it

Abstract. Software startups develop innovative products for which
there are typically no customers to refer to elicit requirements. Often,
these companies develop a set of features without a better understanding
of customer needs. An experiment-based approach to validate hypothe-
ses about the customer and market could increase their chance of success
or, at least, accelerate their realization of the product worthlessness. The
first step of an experiment-based approach is to elicit hypotheses to guide
experiments. Software startups base their products on business assump-
tions, but there is a lack of understanding of how these assumptions
are formed and how teams could elicit hypotheses systematically. To fill
this gap, we performed an empirical study consisted of two steps. First,
we explored based on which assumptions startups define their products
using a multiple case study. The results indicate that these companies
developed their products based on founders’ assumptions derived from
their previous experience. Second, we investigated cognitive mapping as
a tool to elicit hypotheses systematically with two software startups. The
results indicate that this approach can serve as the basis of a method to
elicit hypotheses in early-stage software startups.

Keywords: Hypotheses engineering - Software startups -
Experimentation

1 Introduction

The use of experiments to understand the business value is a recent trend in
software engineering [5,13]. In this context, experimentation is a process of con-
tinuously validating product assumptions, transforming them as hypotheses, pri-
oritizing, and testing them following the scientific method to support or refute
them [13]. This notion comprises several techniques like prototypes, controlled
experiments [5], and problem or solution interviews [13].

In a recent position paper [15], we argued the need for Hypotheses Engineer-
ing to handle hypotheses in an experiment-driven approach in a similar way in
which Requirements Engineering handles requirements in a traditional software
development process. Hypotheses should be elicited, documented, analyzed, and

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 211-220, 2020.
https://doi.org/10.1007/978-3-030-49392-9_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_14&domain=pdf
http://orcid.org/0000-0003-1303-4173
http://orcid.org/0000-0001-8424-419X
https://doi.org/10.1007/978-3-030-49392-9_14

212 J. Melegati and X. Wang

prioritized to perform experiments efficiently. In this paper, we will use “assump-
tion” as a personal or team-wise, generally implicit, understanding taken as
truth without being questioned or proved, and “hypothesis” as an explicit state-
ment that has not been verified yet, but an experiment could evaluate. That is,
assumptions exist on a cognitive and abstract level, while hypotheses exist on a
concrete level in experimentation.

Despite experimentation being a well-known approach for startups and serv-
ing as the basis of the Lean Startup methodology [6], software startups still focus
on developing the product without testing critical assumptions [9]. In this paper,
we targeted the problem of eliciting hypotheses in early-stage software startups,
where experimentation is expected to be the primary way of working [17]. The
following research question will guide the study: How can early-stage software
startups define hypotheses to support experimentation?

To achieve our goal, we performed a two-phased empirical study. The first
phase aimed to understand how the assumptions on which startups base their
products are formed. The second phase investigated how to uncover these
assumptions and elicit hypotheses to guide experiments. The first phase results
indicated that products are based on the founder’s assumptions about the market
and the customer. In the second phase, we used cognitive mapping to make the
founders’ assumptions explicit. Our results indicated that this approach could
underpin a method to elicit hypotheses systematically in software startups.

2 Background and Related Work

Although the term ‘software startup’ is still not a consensus among authors [1],
a common set of characteristics has emerged in recent studies: innovation, lack of
resources, uncertainty, time-pressure, small team, highly reactive, and rapid evo-
lution [1]. Based on the literature, Klotins et al. [12] proposed a life-cycle model
for startups with four stages: inception, stabilization, growth, and maturity. The
first stage goes from idea conception until the first release. In the next stage, the
startup prepares to scale regarding technical and operational aspects. On these
two early-stages, teams focus on finding a relevant problem and solution. In the
growth stage, the startup aims to reach the desired market participation, and,
in the last stage, it progresses into an established company.

Usually, startups develop software in a market-driven context [1] and offer
it to an open marketplace instead of a specific customer. In this latter situa-
tion, called specific-customer or bespoke development, one single customer cov-
ers the costs to produce the software according to its needs and wishes [16].
Klotins et al. [12] observed the similarities between market-driven development
and software startups: mainly invented requirements, light-weight, and informal
practices, and quick releases to get customer feedback.

Nevertheless, practices used in the market-driven context may not apply to
software startups. In the former, requirements are generally gathered through
observing a competing product or collaborating with key customers [16]. In soft-
ware startups, the options are limited by the innovative nature of products.



Hypotheses Elicitation in Early-Stage Software Startups 213

What makes a product new and unique cannot be found elsewhere. It is typi-
cally not recognizable by potential customers, as the phrase attributed to Henry
Ford says: “if I had asked people what they wanted, they would have said faster
horses.” This mismatch explains why teams in software startups still rely on
their ideas or a product team [14] to elicit requirements, especially on how the
founder views the market [19]. In such innovative contexts, experimentation has
been promoted as an essential practice for new ventures (e.g., [3] and [11]).

In software engineering, experimentation has focused on testing hypotheses
about the product and the market [5,13], and some models were proposed to
systematize it [15]. These models extended and are similar to the Lean Startup’s
Build-Measure-Learn cycles [17]. In these cycles, startups should first take their
assumptions as hypotheses and build the minimum solution to test one of them
(Build). Based on metrics (Measure), the team should accept or reject the
hypothesis (Learn), that is, persevering or pivoting.

These models provide an overview of the experimentation process, but they
do not describe how to define hypotheses [15] and were not explicitly derived
for startups. Regarding software startups, to elicit hypotheses, several industry
practices have been suggested, such as Business Model Canvas (BMC) (e.g., [8]).
Recently, Bland et al. [2] proposed the Assumption Mapping: a set of tools to
help teams come up with hypotheses, highly inspired by BMC. But it was not
derived from scientific work and did not focus on software startups. In summary;,
no scientific study focused on how assumptions, on which startups base their
products, are formed and how they can inform hypotheses elicitation.

3 Research Method

We performed an empirical study divided into two phases, and each consisted of
an exploratory multiple-case study. Following the rationale of typical cases [20],
we selected software startups in the inception or stabilization phase and where
founders had the initial ideas. Through our contact network, we selected four
startups (A and B for the first phase, and C and D for the second phase).

The first phase aimed to understand how the assumptions on which startups
based their products are formed. It consisted of semi-structured interviews fol-
lowing a defined guide. For both cases, we interviewed the founders and, for case
B, also the software developer. The questions aimed to understand the intervie-
wees’ background, the startup idea, motivation to build the product, and how
they changed throughout the company history. In the second phase, we evalu-
ated a technique to elicit hypotheses based on the first phase results. It consisted
of interviews with startup founders who had the initial ideas. Both founders
interviewed in this phase recently did a course where several methodologies and
techniques were presented, including Lean Startup and Business Model Canvas.

4 First-Phase Results

Case A. The startup was developing a software library to be added in projects
which will detect run-time problems, like exceptions, observed or inferred based



214 J. Melegati and X. Wang

on data collected from the target system. A dashboard will show these problems
live along with solutions from similar issues found on the Internet and a list of
freelance developers that could help to solve the problem. In some cases, the
system would be able to fix some issues automatically. The founder has worked
as a software development consultant for an extended period. While working on
third-party projects, he observed that such a tool could help him work more
effectively. As another reason to develop the tool, he also believed that the
technical level of software developers was decreasing nowadays.

Case B. The startup runs a website to help hotel owners and managers to
find the best software solutions to their businesses. The interviewed founder had
worked in a company that handled web marketing and websites before staying
twelve years in a big web agency. Throughout his work life, he had extensive
contact with the tourism sector, especially the hospitality industry. He claimed
that the idea came to him based on the needs he observed from hotel owners,
the fact that there are a lot of technological tools available in the market to run
the business, and the needs that software vendors have to reach hotel owners. He
was inspired by American software review websites and the lack of a specific one
for the hospitality sector. Then, the original idea was to list available software
with users’ reviews, bring hotel owners to the website, and receive a fee for each
lead (an interested customer that visited the vendor website) generated.

When the website went online, the use was below the expected. The team
concluded that the hotel owners were not able to compare different solutions
because these products rarely have the same set of features, and, often, hotels
needed more than one to fulfill their needs. Then, the startup changed the web-
site: now, the hotel owner fills a form giving details about her business, and the
system would use a simple algorithm to match solutions with business needs.

Cross-case analysis. Based on the case descriptions above, the founder’s
background shaped beliefs about target customers and the market. Through
these lenses, founders made sense about the specific business environment and
its players, explaining their behavior and, in the last stance, trying to forecast
it as illustrated in Fig. 1. Specifically, in startup B, the founder considered that
hotel owners wanted to buy software solutions, and they were able to compare
different alternatives and select the best for her case. Based on that, the founder
foresaw the convenience for hotel owners of a website with the list of available
software.

Background of founder N Startup idea

Assumptions about ) Forecast about
Previous experience customers and customers and Product idea !
' market Do market :

Fig. 1. The process of idea creation.

The assumptions the founder had about customers and market guided
requirements elicitation. In startup B, it was possible to see what could happen
next. After the software was ready and put into use, data showed that it was



Hypotheses Elicitation in Early-Stage Software Startups 215

not working as predicted. Therefore, the founder had to update his assumptions
and, consequently, change the product. This new understanding emerged from
experiments and led to better results. Such rearrangement exposed an implicit
process model (see Fig.2) for development in software startups: the founder’s
assumptions guide the elicitation of requirements and the software usage data
may impose changes on these assumptions. This updated world representation
is used to elicit new requirements.

LAssumptions]—)[Requirements Vézlrfgraﬁ(ej m

was not totally compatible with and updated the

Fig. 2. The founder’s assumptions being updated.

Cognitive mapping. To further explore the founders’ assumptions, a valu-
able approach would be to make them explicit. For this task, an available tool is
cognitive mapping. Cognitive maps are visual representations of causal aspects
of a person’s belief system as a graph where nodes represent the concepts indi-
viduals use and arrows, causal links between them [7] labeled according to its
association: ‘+’; positive; ‘—’, negative, and ‘/o/’ neutral.

We used case B to illustrate the approach. First, we elicited the founder’s
initial cognitive map (Fig.3a). Then, through the relationships among concepts
in the map, we derived hypotheses on which the product was based. They are
(1) owners have several software options to run hotels; (2) because of that, they
have difficulty to choose software; (3) a list of options would help owners to
select the product; (4) software vendors have difficulty to reach hotel owners.
Hence, the first product version acted as an experiment to test the usefulness
of a list of available software to hotel owners, which results made the founders
update their assumptions about the customers’ behavior (Fig. 3b). Such analysis
was performed ex post (after the product was developed). To verify if a cognitive
map could be used ex ante, we performed a second phase for this study.

5 Second-Phase Results

In this phase, we performed a study with two other software startups, C and D.
We interviewed the founders following the steps: (1) present the hypothesis con-
cept and its relation to Lean Startup; (2) ask a summary of the startup idea,
focusing on customer segments and value proposition; (3) ask on which hypothe-
ses the founder believed his idea is based; (4) using a whiteboard and interacting
with the founder, draw a cognitive map; (5) create a list of hypotheses based on
the cognitive map and compare it with the initially created list; (6) ask feedback.

To draw the map, we adapted the approach proposed by Furnari [7]. First, we
asked the interviewee to describe the business model. From that, we extracted
concepts and causal relationships. Then, we dig on each concept to see if they



216 J. Melegati and X. Wang

Several software Hotels owners' 1 _ | Software vendors' | 4 Hotels are
options to run t > difficulty to [«— Review website E—) difficulty to reach [ geographically
hotels choose software H ! hotel owners distributed

(a) Initial cognitive map on which the founder based the business idea.

+
+

Several software Hotels owners' - Websne to guide - Software vendors' Hotels are
options to run > difficulty to <—~ hotel owners to —>| difficulty to reach [« geographically
hotels choose software . select a solution | hotel owners distributed

Lack of knowledge of
how to compose
different solutions

(b) Cognitive map that emerged after the first failure. In bold, the learning obtained.

Fig. 3. Startup B founder’s assumptions in different moments of the company life.

were, in reality, not based on an underlying assumption. The process ended when
the interviewee said that the map represented her understanding of the problem.
Throughout the process, we used the whiteboard to depict the current status of
the mapping. Figure4a and b display the cognitive maps obtained.

+

+ Make
Company Company Developers developers' Gamification
satisfaction results productwlty
work more fun

Developers
satisfaction

(a) Startup C.

@
8
=
c
©
-
3
s

Increase network
efficiency

Make network

User
satisfaction

[2)
o7
Q
=1
c
°
ot
s)
=X

User's willingness
+ to react +

(b) Startup D.

Fig. 4. Cognitive maps created during interview with the founders.

Case C is a startup where the founders plan to develop a digital mentor
for software developers to increase their happiness and satisfaction. The prod-
uct would try to adapt itself to each developer’s needs. The paying customer
would be companies interested in improving their developers’ productiveness.
When asked about hypotheses, the founder mentioned that the first was that
software development teams could not organize themselves. Through some cus-
tomer interviews, it got invalidated, and they pivoted the initial idea to the



Hypotheses Elicitation in Early-Stage Software Startups 217

current one. The next hypothesis or, how the founder called, “exploration” is to
understand if software developers care about soft skills. When asked about other
hypotheses, the founder said that she is waiting for another round of tests.

In the interview, the founder stated that the main element to increase devel-
opers’ productivity would be making their work more fun through gamification.
The map implied six hypotheses: (1) developers productivity improves the com-
pany results; (2) developers satisfaction rises developers productivity; (3) making
the development work more fun increases the developers’ productivity and (4)
the developers’ satisfaction; (5) gamification could make developers’ work more
fun; (6) making the development work more fun would rise the company satis-
faction. Although some identified hypotheses are trivial and may not demand
an experiment, the founder recognized that “[they] have to see if the correlation
between having fun and the productivity [exists|, that is a major risk.”

Case D is developing a solution to improve network connectivity, especially
where the Internet quality is low. Through an innovative approach, suppressed
here according to the interviewee’s request, the solution will make the network
status transparent to the user, allowing it to be adapted to the needs and,
consequently, improving the quality of service. Initially, the founder answered
that their main hypothesis regarded how large is the area where the quality is
bad and if providers are willing to fix it soon. He mentioned that he talked to
many potential customers, and most of them would want the solution.

The map implied four hypotheses: (1) increasing the network efficiency will
improve user satisfaction, (2) making the network more transparent will not
decrease user satisfaction, (3) making the network more transparent will increase
the user’s willingness to react, and (4) the users’ willingness and ability to
respond will increase user satisfaction. The founder mentioned they had con-
sidered these hypotheses before, but the process “made them explicit and more
structured.”

6 Discussion

Software startups elicit requirements on their own, based on assumptions regard-
ing the customer or market. Since the founder is generally the sole owner of inno-
vation [19], these assumptions are based on founders’, not necessarily explicit
beliefs. In other words, products are based on the founders’ tacit knowledge
about the customer and market. Yet, the delay in abandoning an unworthy idea
could mean exhausting the resources and, consequently, failing the company. The
possible reasons not to make these assumptions explicit include protecting them
against criticism [4] or avoiding an uncomfortable situation of not being able to
predict and control if they are invalidated [10]. Besides that, founders try to pre-
dict a distant event: the use of a product or a service after development. Thus, as
we observed, it can take time for the founder to review her assumptions. Such an
adjustment is more frequent when used to predict immediate happenings [10].
A hypothesis elicitation method should evidence assumptions that are guid-
ing the startup product development. Then, the first step is to make explicit the



218 J. Melegati and X. Wang

founders’ assumptions. Our study showed that cognitive mapping is a viable way
to do it. This option is related to what Furnari [7] called “cognitive perspective”
in business model research.

The value of a model cognitive map is two-folded. First, it allows the startup
to check the business model for flaws. Second, the team can derive hypotheses
from the cognitive map for experiment creation. Data collected from experiments
will validate their understanding or update it. Once ideas are validated, they can
be used to guide requirements elicitation.

To handle the threats to validity, we followed the definitions given by Runeson
et al. [18]. Since the interview guide focused on the business model description
and evolution, the threat to construct validity is minimal. Besides that, the tri-
angulation of data with interviewing a different team member decreased the
threat even more. Triangulation was also essential to mitigate threats to inter-
nal validity. Besides that, both authors discussed the results (peer debriefing).
Concerning external validity, in case studies, it is not possible to draw statistical
significance [18]. Then, the goal was analytical generalization through studying
typical software startups where the founder is the main innovation owner. These
companies generally focus on developing a solution instead of understanding the
customer [9]. To improve reliability, we described all the performed steps.

7 Conclusions

Early-stage software startups have to evaluate if their ideas are worth pursuing.
Developing experiments based on hypotheses about various aspects of a business
model is essential to this task. In such a process, the first step is to define the
hypotheses. There are some techniques in the literature to perform this, but
they were not systematically obtained from scientific knowledge. To derive a
basis for such a tool, we conducted a two-phased empirical study. First, we
concluded that the founder’s past experiences mold a set of assumptions used
to predict the environment and how a new product would behave. Then, we
had promising results using cognitive mapping to elicit hypotheses leading us to
believe it could serve as the basis of a method for early-stage software startups.
In order to develop such a method, future work should answer some questions,
such as if the tool can elicit all hypotheses related to the product.

References

1. Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, 1.0., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144, 255-274
(2018)

2. Bland, D., Osterwalder, A.: Testing Business Ideas. Wiley, Hoboken (2019)

3. Eisenhardt, K.M., Tabrizi, B.N.: Accelerating adaptive processes: product innova-
tion in the global computer industry. Adm. Sci. Q. 40(1), 84 (1995)

4. Eraut, M.: Non-formal learning and tacit knowledge in professional work. Br. J.
Educ. Psychol. 70, 113-136 (2000)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Hypotheses Elicitation in Early-Stage Software Startups 219

Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Holmstrém Olsson, H.,
Bosch, J.: Experimentation growth: evolving trustworthy A/B testing capabilities
in online software companies. J. Softw. Evol. Proc. 30, 2113 (2018)

Frederiksen, D.L., Brem, A.: How do entrepreneurs think they create value? A
scientific reflection of Eric Ries’ Lean Startup approach. Int. Enterpren. Manag. J.
13(1), 169-189 (2017)

Furnari, S.: A cognitive mapping approach to business models: representing causal
structures and mechanisms. Adv. Strateg. Manage. 33, 207-239 (2015)

Gutbrod, M., Miinch, J.: Teaching lean startup principles: an empirical study on
assumption prioritization. In: Software-intensive Business Workshop on Start-ups,
Platforms and Ecosystems (SiBW 2018), pp. 245-253 (2018)

Gutbrod, M., Miinch, J., Tichy, M.: How do software startups approach experi-
mentation? Empirical results from a qualitative interview study. In: Felderer, M.,
Méndez Ferndndez, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 297-304. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69926-4 21

Kelly, G.: The Psychology of Personal Constructs: Volume One: Theory and Per-
sonality. Taylor & Francis, Washington, DC (2002)

Kerr, W.R., Nanda, R., Rhodes-Kropf, M.: Entrepreneurship as experimentation.
J. Econ. Perspect. 28(3), 25-48 (2014)

Klotins, E., et al.: A progression model of software engineering goals, challenges,
and practices in start-ups. IEEE Trans. Softw. Eng. 13(9), 1 (2019)

Lindgren, E., Miinch, J.: Raising the odds of success: the current state of experi-
mentation in product development. Inf. Softw. Technol. 77, 80-91 (2016)
Melegati, J., Goldman, A., Kon, F., Wang, X.: A model of requirements engineering
in software startups. Inf. Softw. Technol. 109, 92-107 (2019)

Melegati, J., Wang, X., Abrahamsson, P.: Hypotheses Engineering: first essen-
tial steps of experiment-driven software development. In: IEEE/ACM Joint 4th
International Workshop on Rapid Continuous Software Engineering and 1st Inter-
national Workshop on Data-Driven Decisions, Experimentation and Evolution
(RCoSE/DDrEE), pp. 16-19 (2019)

Regnell, B., Brinkkemper, S.: Market-driven requirements engineering for software
products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software
Requirements, pp. 287-308. Springer, Heidelberg (2005). https://doi.org/10.1007/
3-540-28244-0-13

Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. The Lean Startup: How Today’s
Entrepreneurs Use Continuous Innovation to Create Radically Successful Busi-
nesses, Crown Business (2011)

Runeson, P., Hoést, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

Seppénen, P., Oivo, M., Liukkunen, K.: The initial team of a software startup. In:
2016 International Conference on Engineering, Technology and Innovation (ICE)
& IEEE International Technology Management Conference, pp. 5765 (2016)
Yin, R.: Case Study Research: Design and Methods. Applied Social Research Meth-
ods. SAGE Publications, Thousand Oaks (2003)


https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/3-540-28244-0_13
https://doi.org/10.1007/3-540-28244-0_13

220 J. Melegati and X. Wang

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

Agile and Testing



®

Check for
updates

Results from a Replicated Experiment
on the Affective Reactions of Novice
Developers When Applying Test-Driven
Development

), Giuseppe Scanniello?, Maria Teresa Baldassarre’,

1

Simone Romano!®

Davide Fucci®, and Danilo Caivano

1 University of Bari, Bari, Italy
{simone.romano,mariateresa.baldassarre,danilo.caivano}@uniba.it
2 University of Basilicata, Potenza, Ttaly
giuseppe.scanniello@unibas.it
3 Blekinge Institute of Technology, Karlskrona, Sweden
davide.fucci@bth.se

Abstract. Test-Driven Development (TDD) is an incremental approach
to software development. Despite it is claimed to improve both quality of
software and developers’ productivity, the research on the claimed effects
of TDD has so far shown inconclusive results. Some researchers have
ascribed these inconclusive results to the negative affective states that
TDD would provoke. A previous (baseline) experiment has, therefore,
studied the affective reactions of (novice) developers—i.e., 29 third-year
undergraduates in Computer Science (CS)—when practicing TDD to
implement software. To validate the results of the baseline experiment,
we conducted a replicated experiment that studies the affective reactions
of novice developers when applying TDD to develop software. Developers
in the treatment group carried out a development task using TDD, while
those in the control group used a non-TDD approach. To measure the
affective reactions of developers, we used the Self-Assessment Manikin
instrument complemented with a liking dimension. The most important
differences between the baseline and replicated experiments are: (i) the
kind of novice developers involved in the experiments—third-year vs.
second-year undergraduates in CS from two different universities; and
(#i) their number—29 vs. 59. The results of the replicated experiment do
not show any difference in the affective reactions of novice developers.
Instead, the results of the baseline experiment suggest that developers
seem to like TDD less as compared to a non-TDD approach and that
developers following TDD seem to like implementing code less than the
other developers, while testing code seems to make them less happy.

Keywords: TDD - Affective state - Replication - Experiment

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 223-239, 2020.
https://doi.org/10.1007/978-3-030-49392-9_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-49392-9_15

224 S. Romano et al.

1 Introduction

Test-Driven Development (TDD) is an incremental approach to software devel-
opment in which unit tests are written before production code [1]. In particular,
TDD promotes short cycles composed of three phases to incrementally imple-
ment the functionality of a software:

Red Phase. Write a unit test for a small chunk of functionalities not yet imple-
mented and watch the test fail;

Green Phase. Implement that chunk of functionalities as quickly as possible
and watch all unit tests pass;

Refactor Phase. Refactor the code and watch all unit tests pass.

Advocates of TDD claim that this development approach allows improving
the (internal and external) quality of software as well as developers’ productiv-
ity [8]. However, research on the claimed effects of TDD, gathered in secondary
studies, has so far shown inconclusive results (e.g., [15]). Such inconclusive results
might relate to the negative affective states that developers would experience
when practicing TDD (e.g., [8]). For example, frustration due to spending a
large amount of time in writing unit tests that fail, rather than immediately
focusing on the implementation of functionality. Nevertheless, only Romano
et al. [21] has studied through a controlled experiment the affective reactions
of developers when applying TDD to implement software. In particular, they
recruited 29 novice developers who were asked to carry out a development task
by using either TDD or a non-TDD approach. At the end of the development
task, the researchers gathered the affective reactions to the development app-
roach, as well as to implementing and testing code. To this end, Romano et
al. used Self-Assessment Manikin (SAM) [3]—a lightweight, but powerful self-
assessment instrument for measuring affective reactions to a stimulus in terms of
the pleasure, arousal, and dominance dimensions—complemented with the lik-
ing dimension [17]. The results highlight differences in the affective reactions of
novice developers to the development approach, as well as to implementing and
testing code. In particular, novice developers seem to like TDD less as compared
to a non-TDD approach. Moreover, novice developers following TDD seem to like
implementing code less than those developers following a non-TDD approach,
while testing code seems to make TDD developers less happy.

The Software Engineering (SE) community has shown a growing interest in
replications of empirical studies (e.g., replicated experiments) and recognized
the key role that replications play in the construction of knowledge [25]. To
validate the results of the experiment by Romano et al. [21] (also called baseline
experiment from here on), we conducted a replicated experiment with 59 novice
developers. In the replication, we investigated the same constructs as the baseline
experiment, but in a different site and with participants sampled from a different
population—i.e., 59 second-year vs. 29 third-year undergraduates in Computer
Science (CS) from two different universities.



Results from a Replicated Experiment on the Affective Reactions of Novice 225

Paper Structure. In Sect.2, we report background information and related
work. The baseline experiment is summarized in Sect. 3. The replication is out-
lined in Sect.4. The results of our replication are presented and discussed in
Sect. 5 and Sect. 6, respectively. We discuss the threats to validity of our repli-
cation in Sect. 7. Final remarks conclude the paper.

=

Fig. 1. From top down, the graphical representations of the pleasure, arousal, domi-
nance, and liking dimensions. This figure has been taken from [21].

2 Background and Related Work

According to the PAD (Pleasure-Arousal-Dominance) model—a psychological
model to describe and measure affective states—, people’s affective states can be
characterized through three dimensions: pleasure, arousal, and dominance [22].
The pleasure dimension varies from unpleasant (e.g., unhappy/sad) to pleasant
(e.g., happy/joyful), the arousal one ranges from inactive (e.g., bored/calm) to
active (e.g., excited/stimulated), and finally, the dominance dimension varies
from “without control” to “in control of everything” [17]. To measure a person’s
affective reaction to a stimulus in terms of the pleasure, arousal, and dominance
dimensions, Bradley and Lang [3] proposed a pictorial self-assessment instrument
they named SAM. This instrument represents each dimension graphically with
a rating scale placed just below the graphical representation of each dimension
so that a person can self-assess her affective reaction in terms of that dimen-
sion (see Fig.1). For instance, SAM pictures the pleasure dimension through
manikins varying from an unhappy manikin to a happy one; thus the nine-
point rating scale, placed just below the graphical representation of the pleasure
dimension, allows a person to self-assess, from one to nine, that dimension of her
affective reaction. Recently, Koelstra et al. [17] have complemented SAM with



226 S. Romano et al.

the liking dimension ranging from dislike—pictured through a thumb down—to
like—pictured through a thumb up (see Fig.1).

Both Human-Computer Interaction (HCI) and affective computing research
fields have utilized SAM in their empirical studies (e.g., [12,17]). Later, the SE
research field has used SAM as well. For example, Graziotin et al. [11] conducted
an observational study with eight developers who performed development tasks
on individual projects. Every ten minutes, the participants self-assessed both
their affective state, by using SAM, and their productivity. The results show
that pleasure and dominance are positively correlated with productivity.

A few SE studies have investigated the affective states of developers through
controlled experiments (e.g., [16,26]). Besides the study by Romano et al. [21],
which we summarize in the next section, no controlled experiment has been con-
ducted to investigate the affective reactions of developers while practicing TDD.

3 Baseline Experiment

In this section, we summarize the baseline experiment by Romano et al. [21] by
taking into account the guidelines for reporting replications in SE [6].

3.1 Research Questions
The baseline experiment aimed to answer the following Research Question (RQ):

RQ1. Is there a difference in the affective reactions of novice developers to a
development approach (i.e., TDD vs. a non-TDD approach)?

The aim of RQ1 was to understand the affective reactions that TDD raises on
novice developers in terms of pleasure, arousal, dominance, and liking. To deepen
such an investigation, two further RQs were formulated and studied:

RQ2. Is there a difference in the affective reactions of novice developers to the
implementation phase when comparing TDD to a non-TDD approach?

RQ3. Is there a difference in the affective reactions of novice developers to the
testing phase when comparing TDD to a non-TDD approach?

The aim of RQ2 and RQ3 was to understand the effect of TDD on the affective
reactions of novice developers—in terms of the pleasure, arousal, dominance, and
liking dimensions—with respect implementing and testing code, respectively.

3.2 Participants and Artifacts

The participants in the baseline experiment were 29 third-year undergraduates in
CS at the University of Basilicata (Italy). According to previous work (e.g., [13]),
Romano et al. considered undergraduates in CS as a proxy of novice developers.
The participants were taking the SE course when they voluntarily accepted to
take part in the experiment. Once the students accepted to participate, they were



Results from a Replicated Experiment on the Affective Reactions of Novice 227

asked to fill in a pre-questionnaire (e.g., to collect information on their experience
on unit testing). Based on the data gathered through this questionnaire, the
participants had experience in both C and Java programming. No participant
had experience with TDD at the beginning of the SE course.

The baseline experiment used two experimental objects—i.e., Bowling Score
Keeper (BSK) and Mars Rover APT (MRA). Each participant dealt with either
BSK or MRA. The participants, who received BSK, were asked to develop an
APIT for calculating the score of a bowling game, while those who received MRA
had to develop an API for moving a rover on a planet. In both cases, they
had to code in Java and write unit tests by using JUnit. At the beginning
of the experimental session, any participant was provided with: (i) a problem
statement regarding the assigned experimental object; (ii) the user stories to
be implemented (i.e., 13 user stories for BSK and 11 user stories for MRA);
(iii) a template project for the Eclipse IDE containing the expected API and an
example JUnit test class; and (iv) for each user story an acceptance test suite
to simulate customers’ acceptance of that story. Both BSK and MRA had been
previously used as experimental objects in empirical studies on TDD and could
be fulfilled in a three-hour experimental session (e.g., [9,10]).

To gather the affective reactions of the participants, Romano et al. exploited
SAM [3] complemented with the liking dimension [17]. SAM allows measuring
people’s affective reactions to a stimulus over nine-point rating scales in terms
of pleasure, arousal, dominance, and liking (see Sect. 2).

3.3 Variables and Hypotheses

The baseline experiment compared the affective reactions of two different groups
of novice developers, namely treatment and control. The treatment group con-
sisted of participants who were asked to use TDD to carry out a development
task, while the control group consisted of participants who were unaware of TDD
and had to perform a development task by using a non-TDD approach named
YW (Your Way development)—i.e., the approach they would normally utilize
to develop [9]. Therefore, the main Independent Variable (IV), or main factor,
manipulated in the baseline experiment was Approach, which assumed two val-
ues: TDD or YW. Within each group, some participants dealt with BSK, while
others dealt with MRA. Thus, there was a second IV, namely Object, which
had BSK or MRA as the value.

To measure the pleasure, arousal, dominance, and liking dimensions with
respect to the development approach (i.e., to answer RQ1), Romano et al. used
the following four ordinal Dependent Variables (DVs): APPpg, APPgs, APPpgy, and
APP; 1. These variables assumed integer values in between one and nine since each
dimension could be assessed through a nine-point rating scale (see Sect. 2). Simi-
larly, they measured pleasure, arousal, dominance, and liking with respect to the
implementation and testing phases (i.e., to answer RQ2 and RQ3) through the
following four ordinal DVs each: IMPprg, IMPygg, IMPpgy, IMPr1k, TESprs, TESrs,
TESpgu, and TES k.



228 S. Romano et al.

To answer the RQs, the following parameterized null hypothesis was tested:

HOpv. There is no effect of Approach on DV € {APPPLS, APP pgs, APPpgy, APP; 1%,
IMPprs, IMPygs, IMPpoy, IMPy g, TESprs, TESurs, TESpow, TESLIx | -

3.4 Design and Execution

The design of the baseline experiment was 2 * 2 factorial [27]. Such a kind of
between-subjects design has two factors (i.e., two IVs) having two levels each.
The two factors were Approach and Object. Each participant in the baseline
experiment was randomly assigned to one development approach and to one
experimental object—i.e., no participant used both development approaches or
dealt with both experimental objects. In particular, 15 participants were assigned
to TDD—7 with BSK and 8 with MRA—, while 14 participants were assigned
to YW—7 with BSK and 7 with MRA.

Before the experiment took place, the participants had undergone a training
period. In the first part of the training period, all participants attended face-to-
face lessons on unit testing, JUnit, Test-Last development (TL), and Incremental
Test-Last development (ITL). They also practiced unit testing with JUnit in a
laboratory session. In the second part of the training, the participants in the
treatment group learned TDD and practiced it through two laboratory sessions
and three homework assignments. The participants in the control group did not
learn TDD, rather they practiced TL and ITL through two laboratory sessions
and three homework assignments. Regardless of the experimental group, the
assignments were the same. The researcher conducted the experiment in a single
three-hour laboratory session at the University of Basilicata where, based on the
experimental groups, the participants carried out the development task—i.e.,
they tackled MRA or BSK—by using TDD or YW. At the end of the develop-
ment task, the participants were asked to self-assess their affective reactions to
the used development approach through SAM [3] complemented with the liking
dimension [17]. Similarly, they self-assessed their affective reactions to imple-
menting and testing code, respectively.

3.5 Data Analysis and Results

Romano et al. analyzed the effects of Approach, Object, and their interac-
tion (i.e., Approach:Object) by using ANOVA Type Statistic (ATS) [4], a non-
parametric version of ANOVA recommended in the HCI research field to ana-
lyze rating-scale data in factorial designs [14] (like the case of the baseline
experiment). In particular, for each DV, the following ATS model was built:
DV ~ Approach + Object + Approach : Object. To judge whether an effect was
statistically significant, the « value was fixed (as customary) at 0.05. That is,
an effect was deemed significant if the corresponding p-value was less than a.
To quantify the magnitude of the effect of Approach, in case it was significant,
Romano et al. used Cliff’s ¢ effect size [7]. The size of an effect is deemed: neg-
ligible, if |6| < 0.147; small, if 0.147 < |§| < 0.33; medium, if 0.33 < |J| < 0.474;
or large, otherwise [20].



Results from a Replicated Experiment on the Affective Reactions of Novice 229

In Table 1, we report the ATS results of the baseline experiment. These results
show a significant effect of Approach on APP ¢ (p-value = 0.0024), namely there
is a significant difference between TDD and YW with respect to APPyix. This
allowed rejecting HOppp,,,. The difference in the APP ¢ values was in favor of
YW and large (§ = 0.6048).! Accordingly, Romano et al. concluded that devel-
opers using TDD seem to like their development approach less than those using
a non-TDD approach (i.e., answer to RQ1). Table 1 also shows two further sig-
nificant effects, one for IMPr1x (p-value = 0.0396) and one for TESprs (p-value
= 0.0178) so allowing rejecting HOmp,,, and HOrgs,,, respectively. Both effects
were in favor of YW. The effect size was medium (6 = 0.4286) for IMPp ¢, while
large for TESprs (6 = 0.5). Based on these results, Romano et al. concluded
that: developers using TDD seem to like the implementation phase less than
those using a non-TDD approach (i.e., answer to RQ2); and the testing phase
seems to make developers using TDD less happy as compared to those using
a non-TDD approach (i.e., answer to RQ3). As for the effects of Object and
Approach:Object, they were in no case significant—i.e., neither the experimen-
tal object nor the interaction with the development approach seems to influence
the affective reactions of novice developers.

Table 1. Results, from statistical inference, of the baseline experiment.

DV v Cliff’s 6§ Outcome for HOpy
Approach | Object | Approach:Object

APPprg | 0.1615 0.7721 | 0.8998 - HOpppp; ¢ not rejected

APPpps | 0.2774 0.7794 | 0.1816 - HOppp,pq not rejected

APPpgy | 0.2796 0.8569 | 0.4296 - HOAppDDM not rejected

APP 1k | 0.0024* 0.165 0.6368 0.6048 (large) HOpppy ¢ rejected in favor of YW
IMPpLs | 0.2008 0.6663 | 0.9793 - HO1wpp g not rejected

IMPprs | 0.6799 0.6881 | 0.5752 - HO1wpypg not rejected

IMPpgy | 0.3449 0.5614 | 0.4672 - HOmwppgy not rejected

IMPL1x | 0.0396™ 0.1862 | 0.2703 0.4286 (medium) | HOmp p rejected in favor of YW
TESprg | 0.0178* 0.65 0.7652 0.5 (large) HO1mpp; g rejected in favor of YW
TESprs | 0.4147 0.4765 | 0.3406 - HOrtgsypg not rejected

TESpgm | 0.6341 0.2564 | 0.4738 - HOrggpgy not rejected

TESL1x | 0.0504 0.1194 | 0.0547 - HOrgs; ¢ not rejected

* P-value indicating a significant effect.

Further Analysis and Results. To better contextualize the baseline exper-
iment, Romano et al. also assessed participants’ development performance. To
this end, they used a time-fized strategy [2]. In particular, they defined an addi-
tional DV, named STR, which was computed as follows: (i) count the number
of user stories each participant implemented within the fixed time frame (i.e.,
three hours); then (ii) normalize the number of implemented user stories in
[0,100]—this is because the total number of user stories of MRA was different

! The descriptive statistics were used to determine if the difference was in favor of
TDD or YW.



230 S. Romano et al.

to that of BSK (i.e., 11 vs. 13). It is ease to grasp that the higher the STR value
is, the better the development performance of a given participant is. Romano
et al. analyzed the effects of Approach, Object, and Approach:Object on STR
by using ATS because the normality assumption to apply ANOVA [27] was not
met. The results of ATS did not indicate a significant effect of Approach (p-value
= 0.4765) on STR, namely the development approach seems not to influence the
participants’ development performance. The effects of Object (p-value = 0.2596),
and Approach:Object (p-value = 0.0604) on STR were not significant.

Table 2. Summary of baseline and replicated experiments.

Characteristic Baseline experiment Replication

Participant type III-year undergraduates in CS taking

the SE course at the University of

II-year undergraduates in CS taking the SE
course at the University of Bari

Basilicata
Participant 29 59
number
Site University of Basilicata University of Bari
RQs RQ1, RQ2, RQ3 RQ1, RQ2, RQ3
Experimental BSK, MRA BSK, MRA
objects
Experimental TDD, YW TDD, YW

groups

Environment Java, Eclipse, JUnit

2 * 2 factorial

Java, Eclipse, JUnit

2 * 2 factorial

Design

Assignment to
groups and

15 participants assigned to TDD
(7 BSK, 8 MRA), 14 participants

28 participants assigned to TDD (14 BSK,
14 MRA), 31 participants assigned to YW

objects assigned to YW (7 BSK, 7 MRA) (16 BSK, 15 MRA)
v Approach, Object Approach, Object
Dv APPprs, APPjgs, APPpoy, APPL1k, IMPprg, APPprs, APPpgs, APPpoy, APPL1k, IMPprs, IMPpgs,

IMPpRs, IMPpou, IMPrik, TESprs, TESprs,

IMPpoy, IMPL1k, TESpLs, TESars, TESpom, TESL1k

TESpoy, TESL1k
HOpy

ATS to analyze the effects of
Approach, Object, and
Approach:Object

Null hypotheses

Statistical
inference method

HOpy

ATS to analyze the effects of Approach,
Object, and Approach:Object

4 Replicated Experiment

We conducted a replicated experiment to determine whether the results from the
baseline experiment are still valid in a different site and with a larger number
of participants sampled from a different population. Despite these differences,
we designed and executed the replicated experiment as similarly as possible to
the baseline experiment to determine, in case of inconsistent results with the
baseline experiment, which factors could have caused those results. To this end,
we used the replication package of the baseline experiment, which is available on
the web? and includes experimental objects, analysis scripts, and raw data.

2 https://doi.org/10.6084/m9.figshare.9778019.v1.


https://doi.org/10.6084/m9.figshare.9778019.v1

Results from a Replicated Experiment on the Affective Reactions of Novice 231

As shown in Table 2, the replicated experiment shares most of the charac-
teristics of the baseline one. Therefore, in the following of this section, we limit
ourselves to describe the replicated experiment in terms of participants, and
design and execution. This is to say that RQs, artifacts, variables, hypotheses,
and data analysis of the replication are the same as the baseline experiment;
therefore, such information can be found in Sect. 3.

4.1 Participants

The participants in the replication were 59 second-year undergraduates in CS
at the University of Bari who were taking the SE course. Participation was on
a voluntary basis (i.e., we did not pay the students for their participation). To
encourage students to participate in the replication, we rewarded the partici-
pants with two bonus points in the final mark of the SE course (as had been
done in the baseline experiment). The two bonus points were given regardless of
the performance of the participants in the replication. Similarly to the baseline
experiment, the participants were asked to fill in a pre-questionnaire. Based on
the participants’ answers, they had passed the exams of the Basic and Advanced
Programming courses and had experience with C and Java programming. The
participants were not knowledgeable in TDD.

4.2 Design and Execution

Based on the 2 * 2 factorial design used in the baseline experiment, the par-
ticipants in the replication were randomly assigned to the experimental groups
and objects: 28 participants were assigned to TDD—14 with BSK and 14 with
MRA—; while 31 participants were assigned to YW—16 with BSK and 15 MRA.
All the participants in the replication attended face-to-face lessons on unit
testing, JUnit, TL, and ITL. They also practiced unit testing with JUnit in a
laboratory session. Later, the participants in the treatment group learned TDD
and practiced it through two laboratory sessions and two homework assignments.
The participants in the control group, who did not learn TDD, practiced TL and
ITL through two laboratory sessions and two homework assignments. The mate-
rial (e.g., homework assignments) used to train the participants was the same as
the baseline experiment, although the number of the homework assignments was
different between the baseline and replicated experiments—i.e., three vs. two.
We were forced to give two homework assignments, rather than three, because
the students could not carry out a third homework assignment during the train-
ing period due to deadlines that other courses requested in the same period.
As so, we preferred not overloading students to avoid threat of dropouts from
the experiment. We conducted the experiment in a single three-hour laboratory
session in which the participants carried out the development task—i.e., they
tackled MRA or BSK—by using TDD or YW based on their experimental group.
At the end of the development task, the participants self-assessed their affective
reactions to the used development approach, as well as to implementing and
testing code, by using SAM [3] complemented with the liking dimension [17].



232 S. Romano et al.

5 Results

In Fig. 2, we summarize the values of the DVs (of the replicated experiment) by
using diverging stacked bar plots. These plots show the frequencies of the DV
values grouped by Approach. For each DV, the neutral judgment (i.e., five) is
displayed in grey; while negative judgments (i.e., from one to four) and those
positive (i.e., from six to nine) are shown in shades of red and blue, respectively.
The width of a colored bar (e.g., the grey one) is proportional to the frequencies
of the corresponding DV value (e.g., five in the corresponding DV value for the
grey bar). The interested reader can find the raw data on the web.® The p-values
ATS returned for each DV are reported in Table 3.

1 . 2 3 4 5 6 7 8 9

I ! L ! ! !
APP_ARS APP_DOM APP_LIK

! !
APP_PLS

IMP_PLS IMP_ARS IMP_DOM IMP_LIK

=<
=
—

Approach

TES _PLS TES_ARS TES_DOM TES LIK

T

T T T T T T T T

50 0 50 50 0 50 50 0 50 50 0 50
Percent

Fig. 2. Diverging stacked bar plots summarizing the DV values of the replication.
(Colour figure online)

RQ1—Affective Reactions to the Development Approach. The plots in
Fig.2 (see the first row) do no show huge differences in the affective reactions
to the used development approach, namely TDD or YW, in terms of pleasure
(APPps), arousal (APPugs), dominance (APPpgy), and liking (APPr1x). However,
it seems that TDD has some negative frequencies more than YW as far as
the dominance and liking dimensions are concerned. The results of ATS (see
Table 3) indicate that there is no significant effect of Approach on the pleasure,
arousal, dominance, and liking dimensions of the participants’ affective reactions
to the development approach. Accordingly, we cannot reject the corresponding
null hypotheses. Finally, we did not find any significant effect of the interaction
between Approach and Object, while the effect of Object is significant on the
liking dimension (p-value = 0.0324). That is, the used experimental object signif-
icantly influenced the affective reactions of the participants to the development
approach in terms of liking. However, the effect of the experimental object is
consistent within both experimental groups as there is no significant interaction.

3 https://doi.org/10.6084/m9.figshare.12085821.v1.


https://doi.org/10.6084/m9.figshare.12085821.v1

Results from a Replicated Experiment on the Affective Reactions of Novice 233

Table 3. Results, from statistical inference, of the replication.

DV v Outcome for HOpy
Approach | Object | Approach:Object

APPprs | 0.6937 0.0805 |0.7001 HOyppy s not rejected
APPpgs | 0.6421 0.9018 | 0.2817 HOppp s not rejected
APPpgy | 0.8295 0.1376 |0.5235 HOyppyg not rejected
APPr1x | 0.9211 0.0324* | 0.2571 HOypp, ; nOt rejected
IMPprs | 0.904 0.2849 |0.4421 HO1ypp s not rejected
IMPpgs | 0.7781 0.9646 |0.3198 HO1ypypg not rejected
IMPpgu | 0.9529 0.2389 |0.9411 HO1ypyg not rejected
IMPL1k | 0.8048 0.1314 | 0.6618 HO1yp ¢ not rejected
TESprs | 0.5722 0.3083 | 0.7749 HOrEsy g not rejected
TESars | 0.7446 0.2281 |0.4129 HOtEs,zg not rejected
TESpoy | 0.509 0.1079 | 0.9945 HOrEsy not rejected
TESp1x | 0.4588 0.3457 | 0.1566 HOrgs, x not rejected

* P-value indicating a significant effect.

Answer to RQ1. We observed no significant difference in the affective reac-
tions of novice developers to the used development approach, i.e., TDD or YW.

RQ2—Affective Reactions to the Implementation Phase. As shown in
Fig. 2, there is no huge difference between TDD and YW regarding pleasure
(IMPprs), arousal (IMPygs), dominance (IMPpoy), and liking (IMPLix) of the affec-
tive reactions to the implementation phase. We can also notice that, as for the
liking dimension, TDD seems to have some negative frequencies more than YW.
The results of ATS (see Table 3) do not show any significant effect of Approach
on the four dimensions. Therefore, the corresponding null hypotheses cannot
be rejected. The effects of Object and its interaction with Approach are not
significant.

Answer to RQ2. With respect to the implementation phase, the results do
not show a significant difference in the affective reactions of novice developers
when they use TDD or YW.

RQ3—Affective Reactions to the Testing Phase. The plots in Fig. 2 show
that the affective reactions of the control group to the testing phase in terms
pleasure (TESps), arousal (TESygs), dominance (TESpoy), and liking (TESp1x) are
similar to the those of the treatment group. However, except for the arousal
dimension, a slight trend in favor of YW can be observed since there are more
negative frequencies for TDD as compared to YW. The results in Table 3 do not
allow rejecting the null hypotheses. Finally, neither the effect of Object nor its
interaction with Approach is significant.



234 S. Romano et al.

Answer to RQ3. We did not observe a significant difference in the affective
reactions of novice developers to the testing phase when they use TDD or YW.

Further Analysis Results. We used ATS to analyze STR because the normal-
ity assumption of ANOVA was not met (Shapiro-Wilk normality test p-value =
0.001). The results of ATS do not indicate a significant effect of Approach (p-
value = 0.448) on STR, while the effect of Object (p-value < 0.001) was significant
so suggesting that there was a difference in the development performance of the
participants when dealing with BSK or MRA. However, the effect of the experi-
mental object is consistent within both experimental groups since the interaction
Approach:Object (p-value = 0.566) is not significant.

6 Discussion

Replications that do not draw the same conclusions as the baseline experiment
can be viewed as successful, on a par with replications that come to the same
conclusions as the baseline experiment [24]. Our replication falls into the for-
mer case since the outcomes of the replicated experiment do not fully confirm
the outcomes of the baseline one. In particular, the baseline experiment found
that participants seem to: (i) like TDD less as compared to YW; (ii) like less
implementing code with TDD; and (%) be less happy when testing code using
TDD. The replication cannot support these findings because we did not observe
any significant difference between TDD and YW. As for the other investigated
constructs (e.g., arousal due to the used development approach), the outcomes
of the baseline experiment are confirmed by those of the replicated experiment
(i.e., the statistical conclusions are the same).

N
=1
)
=)
S3

33

75-

50-

3

25-

! ] o

Baseline éxperiment Repliéation Baseline éxpenmem Repliéation

(a) (b)

Months of experience with unit testing
>
Development performance (STR

=}

Fig. 3. Box-plots summarizing (a) months of experience with unit testing (at the begin-
ning of the SE courses) of the participants and (b) development performance of the
participants in the baseline and replicated experiments.

The question that now arises is why the replication fails to fully support the
findings of the baseline one. We speculate that the inconsistent results between



Results from a Replicated Experiment on the Affective Reactions of Novice 235

the baseline and replicated experiments are due to the type of participants
(third-year vs. second-year undergraduates in CS from two different universi-
ties), rather than their number (29 vs. 59). Although the number of participants
in the baseline experiment was not so high and less than that of the participants
in the replication, the magnitude (i.e., Cliff’s § effect size) of the three signif-
icant effects [5], in the baseline experiment, was either medium or large. Such
a magnitude makes us quite confident that the inconsistent results between the
baseline and replicated experiments are not due to the number of participants.
This is why we ascribe them to the type of participants. In particular, the partic-
ipants in the baseline experiment were more experienced with unit testing than
those in the replication, who mostly had no experience (see Fig.3a). Since the
participants in the baseline experiment did not know TDD (at the beginning
of the SE course in which the experiment was run), they were therefore used
to practice unit testing in a test-last manner. That is, they were used to write
unit tests after they had written production code—in contrast to TDD, where
unit tests are written before producing code. This is to say that the participants
in the baseline experiment were probably more conservative and therefore less
prone to change the order with which they usually wrote production and testing
code. Accordingly, their affective reactions, due to TDD, were more negative.
This postulation suggests two possible future research directions: (i) replicating
the baseline experiment with more experienced developers to ascertain that the
greater the experience with unit testing in a test-last manner, the more negative
their affective reactions, due to TDD, are; and (i) conducting an observational
study with a cohort of developers to investigate if the affective reactions caused
by TDD change over time. The above-mentioned postulation could be of interest
to lecturers teaching unit testing. In particular, they could start teaching TDD
as soon as possible to lessen/neutralize the negative affective reactions that TDD
causes; after all, there is empirical evidence showing that, with time, TDD leads
developers to write more unit tests [9].

Another characteristic of the participants that varies between the baseline
and replicated experiments is the academic year of the CS program in which
the participants were enrolled—t.e., third year vs. second one. This implies that
the participants in the baseline experiment have learned to code in Java a few
months before than those in the replication. Nevertheless, the development per-
formance was better in the replication than in the baseline experiment (see
Fig. 3b). Therefore, we are quite confident that the academic year did not cause
the inconsistent results between the baseline and replicated experiments. On the
other hand, we cannot exclude that the worse development performance of the
participants in the baseline experiment could have somehow amplified the differ-
ences in the affective reactions of the participants who practiced TDD or YW.
After all, past work (e.g., [11,16]) has found that the affective states of develop-
ers are related to their performance in SE tasks, despite it is still unclear the role
that TDD can play in such a relation. To better investigate this point, we suggest
researchers to replicate the baseline experiment by introducing a change in the
design, namely: allowing any participant to fulfil the development task (i.e., no



236 S. Romano et al.

fixed time), rather than giving any participant a fixed time frame to carry the
development task. Such a design choice should allow isolating the effect that the
development performance could have on the affective reactions of developers.

7 Threats to Validity

The replicated experiment inherits most of the threats to validity of the baseline
one since, in the replicated experiment, we introduced few changes. We discuss
the threats to validity according to the guidelines by Wohlin et al. [27].

Construct Validity. Threats concern the relation between theory and observa-
tion [27]. We measured each DV once by using a self-assessment instrument (i.e.,
SAM). As so, in case of measurement bias, this might affect the obtained results
(threat of mono-method bias). Although we did not disclose the research goals
of our study to the participants, they might have guessed them and changed
their behavior based on their guess (threat of hypotheses guessing). To miti-
gate a threat of evaluation apprehension, we informed the participants that they
would get two bonus points on the final exam mark regardless their performance
in the replication. There might be a threat of restricted generalizability across
constructs. That is, TDD might have influenced some non-measured constructs.

Conclusion Validity. Threats concern issues that affect the ability to draw
the correct conclusion [27]. We mitigated a threat of random heterogeneity of
participants through two countermeasures: (i) we only involved students taking
the SE course allowing us to have a sample of participates with similar back-
ground, skills, and experience; (i) the participants underwent a training period
to make them as more homogeneous as possible within the groups. A threat of
reliability of treatment implementation might have occurred. For example, a few
participants might have followed TDD more strictly than others, somehow influ-
encing their affective reactions. To mitigate this threat, during the experiment,
we reminded the participants to use the development approach we assigned them.
Although SAM is one of the most reliable instruments for measuring affective
reactions [19], there might be a threat of reliability of measures since the mea-
sures gathered by using SAM, as well as the liking scale, are subjective in nature.

Internal Validity. Threats are influences that can affect the IVs with respect to
the causal relationship between treatment and outcome [27]. A selection threat
might have affected our results since the participation in the study was on a vol-
untary basis and volunteers might be more motivated to carry out a development
task than the whole population of developers. Another threat that might have
affected our results is resentful demoralization, namely participants assigned to
a less desirable treatment might not behave as they normally would. To mitigate
a possible threat of diffusion or treatments imitations, we monitored the partic-
ipants during the execution of the replication and alternated the participants
dealing with BSK to those dealing with MRA.

External Validity. Threats to external validity concern the generalizability of
results [27]. In the replication, we involved undergraduates in CS to reduce the



Results from a Replicated Experiment on the Affective Reactions of Novice 237

heterogeneity among the participants. This implies that generalizing the results
to the population of professional developers might lead to a threat of interaction
of selection and treatment. That is, while we mitigated a threat to conclusion
validity like random heterogeneity of participants, we could not mitigate a threat
to external validity. We prioritized a threat of random heterogeneity of par-
ticipants to better determine, in case of different results between the baseline
and replicated experiments, which factors might have caused such inconsistent
results. However, it is worth mentioning that: (i) the use of students could be
appropriate as suggested in the literature (e.g., [13,18,23]) and (i) the devel-
opment performance of the participants in the replication was better than that
of the participants in the baseline experiment (see Fig. 3b). The use of BSK and
MRA as experimental objects might represent a threat of interaction of set-
ting and treatment despite they are commonly used as experimental objects in
empirical studies on TDD (e.g., [9,10,23]). Moreover, both BSK and MRA can
be fulfilled in a single three-hour laboratory session [9] so allowing better control
over the participants.

8 Conclusion

We conducted a replicated experiment on the affective reactions of novice devel-
opers when applying TDD to implement software. With respect to the baseline
experiment, we varied the experimental context and number of participants. The
results from the replicated experiment do not fully confirm those of the base-
line one. We speculate that the kind of developers can influence the affective
reactions due to TDD. In particular, developers who have experience with unit
testing in a test-last manner could have affective reactions, due to TDD, that
are more negative than developers who have no/little experience with unit test-
ing in a test-last manner. We also speculate that developers’ performance in
implementing software can influence the affective reactions of developers when
applying TDD.

References

1. Beck, K.: Test-Driven Development: by Example. Addison-Wesley, Boston (2003)

2. Bergersen, G.R., Sjgberg, D.I.LK., Dyba, T.: Construction and validation of an
instrument for measuring programming skill. IEEE Trans. Softw. Eng. 40(12),
1163-1184 (2014)

3. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and
the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49-59 (1994)

4. Brunner, E., Dette, H., Munk, A.: Box-type approximations in nonparametric fac-
torial designs. J. Amer. Statist. Assoc. 92(440), 1494-1502 (1997)

5. Caivano, D.: Continuous software process improvement through statistical process
control, pp. 288-293 (2005)

6. Carver, J.C., Juristo, N., Baldassarre, M.T., Vegas, S.: Replications of software
engineering experiments. Empir. Softw. Eng. 19(2), 267-276 (2014)



238

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S. Romano et al.

CIliff, N.: Ordinal Methods for Behavioral Data Analysis. Psychology Press, London
(1996)

Erdogmus, H., Melnik, G., Jeffries, R.: Test-driven development. In: Encyclopedia
of Software Engineering, pp. 1211-1229. Taylor & Francis (2010)

. Fucci, D., et al.: A longitudinal cohort study on the retainment of test-driven

development. In: Proceedings of International Symposium on Empirical Software
Engineering and Measurement, pp. 18:1-18:10. ACM (2018)

Fucci, D., et al.: An external replication on the effects of test-driven development
using a multi-site blind analysis approach. In: Proceedings of International Sym-
posium on Empirical Software Engineering and Measurement, pp. 3:1-3:10. ACM
2016

(Grazi?)tin, D., Wang, X., Abrahamsson, P.: Are happy developers more productive?
In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES 2013.
LNCS, vol. 7983, pp. 50-64. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39259-7_7

Herbon, A., Peter, C., Markert, L., Van Der Meer, E., Voskamp, J.: Emotion studies
in HCI-a new approach. In: Proceedings of International Conference HCI (2005)
Host, M., Regnell, B., Wohlin, C.: Using students as subjects—a comparative study
of students and professionals in lead-time impact assessment. Empir. Softw. Eng.
5(3), 201-214 (2000)

Kaptein, M.C., Nass, C., Markopoulos, P.: Powerful and consistent analysis of
likert-type ratingscales. In: Proceedings of International Conference on Human
Factors in Computing Systems, pp. 2391-2394. ACM (2010)

Karac, 1., Turhan, B.: What do we (really) know about test-driven development?
IEEE Software 35(4), 81-85 (2018)

Khan, I.A., Brinkman, W.P., Hierons, R.M.: Do moods affect programmers’ debug
performance? Cogn. Technol. Work 13(4), 245-258 (2011)

Koelstra, S., et al.: Deap: a database for emotion analysis using physiological sig-
nals. IEEE Trans. Affect. Comput. 3(1), 18-31 (2012)

Lemos, O.A.L., Ferrari, F.C., Silveira, F.F., Garcia, A.: Development of auxiliary
functions: should you be agile? an empirical assessment of pair programming and
test-first programming. In: Proceedings of International Conference on Software
Engineering, pp. 529-539. IEEE (2012)

Morris, J.D., Woo, C., Geason, J.A., Kim, J.: The power of affect: predicting
intention. J. Advert. Res. 42(3), 7-17 (2002)

Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J.: Appropriate statistics
for ordinal level data: should we really be using t-test and Cohen’sd for evaluat-
ing group differences on the NSSE and other surveys? In: Annual Meeting of the
Florida Association of Institutional Research, pp. 1-3 (2006)

Romano, S., Fucci, D., Baldassarre, M.T., Caivano, D., Scanniello, G.: An empirical
assessment on affective reactions of novice developers when applying test-driven
development. In: Franch, X., Méannisto, T., Martinez-Ferndndez, S. (eds.) PROFES
2019. LNCS, vol. 11915, pp. 3-19. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35333-9_1

Russell, J.A., Mehrabian, A.: Evidence for a three-factor theory of emotions. J.
Res. Personal. 11(3), 273-294 (1977)

Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of professionals
in software engineering experiments? In: Proceedings of International Conference
on Software Engineering, vol. 1, pp. 666—676. IEEE (2015)

Shull, F.J., Carver, J.C., Vegas, S., Juristo, N.: The role of replications in empirical
software engineering. Empir. Softw. Eng. 13(2), 211-218 (2008)


https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-3-030-35333-9_1
https://doi.org/10.1007/978-3-030-35333-9_1

Results from a Replicated Experiment on the Affective Reactions of Novice 239

25. da Silva, F., et al.: Replication of empirical studies in software engineering research:
a systematic mapping study. Empir. Softw. Eng. 19(3), 501-557 (2014)

26. Romano, S., Capece, N., Erra, U., Scanniello, G., Lanza, M.: The city metaphor
in software visualization: feelings, emotions, and thinking. Multimedia Tools Appl.
78(23), 33113-33149 (2019). https://doi.org/10.1007/s11042-019-07748-1

27. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1007/s11042-019-07748-1
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Examining the Current State of System
Testing Methodologies in Quality
Assurance

Rafaela Sophocleous and Georgia M. Kapitsaki®™
Department of Computer Science, University of Cyprus, Nicosia, Cyprus
rafaelas08@hotmail.com, gkapi@cs.ucy.ac.cy

Abstract. Testing is an important phase of every software system, as it
can reveal defects early and contribute to achieving high software quality.
In this process of quality assurance, organizations are usually relying on
one testing technique. However, a combination of techniques may prove
more beneficial to the organization, as it might give the chance to dis-
cover a larger number of defects early. In order to examine the above,
in the current work we present a survey on the use of system testing
methodologies. We have gathered data from 252 individuals that reveal
current trends in testing, such as whether requirements are used in the
test case definition and whether the testing techniques used are affected
by parameters, such as years of experience, whereas we examine the com-
bination of smoke testing and regression testing. We also demonstrate
an industrial use case, where this combination was applied, reducing the
number of defects identified by the customer.

Keywords: Software testing - Agile development - Regression
testing - Smoke testing

1 Introduction

In Software Engineering, the testing phase can be defined as the process of valida-
tion and verification that a system meets the business and technical requirements
of the customer and operates as expected. Through the phase of testing orga-
nizations are also trying to find defects with the purpose of resolving them and
improving the system quality [5]. Developing a completely “error-free” software
is almost impossible, but it is possible to produce very high quality software.
Testing is moreover, the ability to test a specific process of the system and get
every time the same result, verifying that the system behaves the same way.
Previous works surveyed testing techniques. Most approaches discuss the sep-
aration of the testing methodologies in different categories, such as dynamic and
static testing, or focus on the best testing methodologies for specific program-
ming languages [1]. Surveys that investigate the use of testing techniques in the
software industry are also available, with one survey performed annually [6]. In
this work, we examine how professionals are using system testing methodologies

© The Author(s) 2020
V. Stray et al. (Eds.): XP 2020, LNBIP 383, pp. 240-249, 2020.
https://doi.org/10.1007/978-3-030-49392-9_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49392-9_16&domain=pdf
http://orcid.org/0000-0003-3742-7123
https://doi.org/10.1007/978-3-030-49392-9_16

Examining the Current State of System Testing Methodologies 241

for Quality Assurance (QA) focusing on some of the choices they make (e.g. how
defects are categorized), in an attempt to investigate how the combination of
testing methodologies but also some choices performed during testing and the
whole software engineering process can affect the testing success. Based on the
results of the survey, we have applied the combination of testing methodologies in
an industrial use case, specifically smoke testing and regression testing, to verify
its usefulness. The main contribution of our work in relation to previous works
are that: 1) we study the current state of adoption of basic testing techniques for
QA, and 2) we have used a practical case to demonstrate that the combination of
more than one testing techniques can decrease defect detection by the customer.
Most of the participants of our study employ Agile methodologies, so our results
are valid for Agile practices.

The rest of the paper is structured as follows. Section 2 presents related work
in the area. Section 3 shows the process that we have followed in order to create
the questionnaire and the data collection process. Section4 presents the main
results of the survey, whereas the results of the industrial use case and limitations
of the study are also presented. Finally, Sect.5 concludes the paper.

2 Related Work

Previous works present the available testing methods and tools, such as tech-
niques for software functional testing [3] or regression testing [7]. Other works
are dedicated to specific programming languages, such as techniques for dynamic
program analysis and test generation for JavaScript [1]. Previous surveys have
also addressed testing techniques in the industry. The State of Testing 2019
Annual Report gathered approximately 1,000 participants from more than 80
countries and studied various aspects of testing [6]. This study contains some sim-
ilar questions with our survey, such as the size of the testing team, and the devel-
opment lifecycle model used but focuses overall on more generic aspects, such
as the tester’s education, techniques and methodologies used and the tester’s
personal development. Its results are very useful and informative but have a dif-
ferent orientation from our work that aims mainly on identifying the usefulness
of the combination of some testing techniques in quality assurance teams.

A survey of practices in software testing methods and tools (STMTSs) focus-
ing on capabilities, limitations, improvements and needs of the tools is presented
in [4]. The main conclusions were that tool usage by the organizations was con-
siderably lower than method usage, that there is limited tool support for testing
methods and that there is a high demand for interoperability between methods
and tools. In contrast to our work, this work focused on how well the software
testing process and activities are supported by the existing methods and tools.

In relation to previous work, we present the current state of testing techniques
and, although we have a smaller number of participants than the very useful
State of Testing 2019 Annual Report, we also have a different focus with the
aim of understanding test cases, connect testing techniques with other factors
and identify combinations of testing techniques for the quality assurance team



242 R. Sophocleous and G. M. Kapitsaki

that assist in producing a lower number of defects. In addition, we have used an
industrial use case, in order to examine whether combinations can provide better
results in terms of defect detection before the system proceeds to production.

3 Study Design

The main aim of the current study is to understand the adoption of testing
techniques with a focus on combining methodologies. Based on this aim, the
survey questions were created in order to give emphasis on this combination and
allow participants to provide information on their testing techniques and results.
The main Research Questions (RQs) that our survey intended to answer are the
following:

— RQ1. How are the test cases created, especially with relation to the require-
ments? How many defect categories does an organization use?

— RQ2. Which testing techniques do organizations employ? Are there any fac-
tors that affect the techniques used, such as the years of experience of the
practitioner or the software lifecycle model used?

— RQ3. Are combinations of smoke and regression testing before the system
goes to production usual? Do they provide better results in terms of defects
detected by the customer?

The questionnaire! created for the purpose of the survey consists of 28 ques-
tions. The first part covers demographic data (e.g. country, age, years of experi-
ence), whereas the second part is dedicated to how testing is used within the orga-
nization, referring to generic techniques, their combination, the lifecycle model
used and specific tools and environments adopted for testing purposes, building
on the above research questions. The survey participants were informed about
the purpose of the study and they had to agree to the consent form, in order to
be able to proceed with answering the questionnaire. In order to reach a large
number of participants, the survey questionnaire was distributed to local com-
panies and was posted on social media in groups that are relevant to testing and
testing practices, in an attempt to gather participation from different countries.
Individual interviews with leaders of quality assurance teams from Cyprus (15
practitioners) were also performed and the main conclusions are included in the
paper. However, no formal interview process was followed.

4 Results and Discussion

4.1 Demographics

252 responses were gathered, 56% of our respondents are male, 43.7% female,
whereas 4% (1 participant) chose not to provide this information. Individuals
of different age were reached: 23.4% are between 18 and 30, 51.2% between 31

! https://forms.gle/4jprqc2t2f4yq9fes.


https://forms.gle/4jprqc2t2f4yq9fg8

Examining the Current State of System Testing Methodologies 243

and 40, 23.8% between 41 and 60, and 1.6% above 60 years old. The individ-
uals have various roles in the organization, including automation testers, test
engineers, software engineers, performance testers, QA director and test leads,
with most participants having more than one role. Most have a role in testing
(90.9%), whereas the rest are developers, analysts or managers. Individuals from
11 countries took part in the study, although a large percentage of the partici-
pants are from Cyprus (25.79%), where the survey was designed, whereas many
participants from Greece were also reached due to the proximity of the countries
(23.02%). Figure 1 shows the participation per country.

[HBelarus

M canada

M china
Ecyprus
CFrance
HGermany
[CJGreece
Mindia

[EThe Netherlands
Huk

[united States

Fig. 1. Participation per country.

4.2 RQI1. Test Cases and Defects Categorization

Test Cases and Requirements. We asked the participants how much (%) of
the requirements are covered by the test cases. Many companies are not using all
system requirements, in order to design their test cases: 10.3% of the participants
are not using the requirements at all, 29% are using 30% of the requirements,
8.3% are using them by 40%, the majority are using 50% of the requirements
(39.7%), only 4.8% are using all requirements, and the remaining (almost 8%)
are using 60-80% of them. This causes several problems because it means that
the system is not tested properly in order to detect all errors before its delivery
to the customer, as creating test cases from requirements to test the behavior of
a software system is a main aspect of black-box testing [8].

Through the interviews with the leaders of QA teams of different companies
about the results that we received for the specific question, participants com-
mented that the team members of the QA team are not well trained to know
some basic guidelines on how to write a test case or sometimes they do not have
much time to execute these test cases. It has also been reported by most that
they only use positive paths, in order to design their test cases. Through the
interviews, it was identified that very few testing techniques are known or are
used by the leaders of quality assurance teams in order to write their test cases:



244 R. Sophocleous and G. M. Kapitsaki

functional, requirement, positive, stress and exploratory. However, this raises
several problems regarding the software quality assurance team and ultimately
the quality of the system that is delivered to the client, because negative testing
is not used. It is important that a system is tested for both positive and negative
paths to make sure that everything works as agreed with the client [2].

Categories of Identified Defects. We asked participants to indicate the
defects categories they are using. We included indicative categories but allowed
participants to mention more categories. The answers are shown in Table 1. Most
participants (25.9%) are using the following 3 levels: Critical, Highest/High and
Medium, with 53.6% using three levels overall but not the same levels in all cases.
39.7% are using two categories, 2.8% are using only one and 3.6% are using 4 or
5 different categories (1 participant did not provide any answer). Based on the
interviews conducted, most of the companies tend not to pay enough attention
to understand why there are defects that are categorized into the above specific
categories, when the system is delivered to the customer. Also, most of the lead-
ers of the quality assurance teams have been told that they simply collect the
defects that can be identified by the client but they do not take into account the
defects that are raised by the quality assurance team.

4.3 RQ2. Testing Techniques and Relevant Factors

Various testing methodologies are employed by the participants. Most are
employing black box testing (87.3%), whereas some are using both black and
white box (11.1%) and only 3 participants (1.2%) are only using white box test-
ing. This is an expected result, as our survey targeted members of the QA team
and the results we report concern primarily black box testing. Almost all par-
ticipants are using both static and dynamic testing (96.8%) and almost all are
relying both on functional and non-functional testing (94%). Figure 2 lists vari-
ous specific techniques used by participants. Unit testing was also mentioned by a
small number of participants but it is not considered, as we assume that it applies
to almost all involved organizations, if we consider their development teams. 2
participants are using only one technique, most (35.7%) are using 3 different
techniques, followed by 5 techniques in 21% of the participants, 4 techniques in
18.7% and 2 techniques in 14.7%. A small percentage (2.4%) is employing 8 or
more techniques. Although automation testing appears in 56.3% of cases, in a
more general question on automation, the use of some sort of automation was
reported by 77% of the participants.

We examined whether the testing techniques employed are affected by the
years of experience of the engineer. We run one-way ANOVA and observed a sta-
tistically significant difference in the use of regression testing (p=0.000), smoke
testing (p=0.000), system testing (p=0.000), automation testing (p=0.001),
performance testing (p=0.009), and usability testing (p=0.000). From Table 2
we observe that there is a decrease in the use of system testing and performance
testing by individuals with larger experience and also a slight decrease in the
use of usability testing, whereas automation testing is used widely in all groups.



Examining the Current State of System Testing Methodologies 245

Table 1. Categories used to characterize defects.

Categories Use Categories Use
percentage percentage

Critical, Highest/High, Medium |25.9% Highest/High, Medium, Low 3.2%
Critical, Highest 23.9% Critical/Highest/High 2%

Critical/Highest, High 15.9% Critical, High, Medium, Low 1.6%
Critical/Highest /High, Medium |14.3% Critical, Highest, High, Medium, Low|1.6%
Highest, High, Medium 5.6% Medium 0.8%
Critical, Highest, High 4.8% Critical, High, Medium, Low, Block |0.4%

Regression Testing
Smoke Testing
Sanity Testing
System Testing
Automation Testing
Ad-Hoc Testing
Performance Testing
Usability Testing
Compatibility Testing
Security Testing
Stress Testing

139 (55.2%)

18 (7.1%)
32 (12.7%)
142 (56.3%)
133 (52.8%)

105 (41.7%)

70 (27.8%)

58 (23%)

0 50 100 150

Fig. 2. Testing techniques used.

Table 2. Testing techniques with significant differences per years of experience.

Experience | Regression | Smoke System Automation Performance | Usability
(years) testing testing testing testing testing testing
1-3 47.5% 67.5% 20% 52.5% 42.5% 60%

3-5 51.7% 41.4% 37.9% 55.2% 65.5% 27.6%
5-10 26.8% 70.1% 2.4% 48% 35.4% 20.5%
>10 86.3% 17.6% 11.8% 82.4% 33.3% 25.5%

We examined whether the adopted software development lifecycle model
affects the testing techniques used, as for instance, automation testing is used
mainly in Agile methodologies. 61.9% of the participants are using Agile or
iterative incremental models (59.9% are using Agile methods). The next most
frequent practice is DevOps (35.7%), followed by the waterfall model (2%),
whereas V-shaped model was mentioned by 1 participant. We observed a sta-
tistically significant difference in the use of many testing techniques: sanity
testing (p=0.000), system testing (p=0.000), automation testing (p=0.000),
performance testing (p=0.000), usability testing (p =0.000), compatibility test-
ing (p=0.000), security testing (p=0.000) and stress testing (p=0.032). In
our dataset we observed that automation testing is used equally in Agile and
waterfall methods (40.4% and 40% respectively), but it is used more in DevOps
(85.6%). Sanity and system testing are far more common in the waterfall model
(60% and 80% respectively), whereas they are used only in small percentages in



246 R. Sophocleous and G. M. Kapitsaki

Agile and DevOps methods. Performance and usability testing are used more in
Agile than in other techniques. Security testing is overall less common but more
frequent in Agile (20%) than in other methodologies. Compatibility testing is
used in Agile and waterfall methods (31.1% and 40% respectively), but is less
common in DevOps (6.7%). Finally, stress testing is used overall less but is more
common in the waterfall model (20%) and rare in DevOps (1.1%).

4.4 RQ3. Combination of Smoke and Regression Testing Before
Production

Most participants (95.6%) responded that the defects that have been raised
by the quality assurance team or client will be reduced if any combination of
testing techniques will be applied to the system. We then provided the following
specific choices of testing techniques asking the participants to provide their
own additional combination based on the available testing techniques used also
in other survey questions (e.g. sanity testing): 1) smoke testing and regression
testing, 2) integration testing, 3) all the above. Smoke testing is generally a
surface level testing to ensure that the build the development team has provided
to the QA team can be accepted for further testing, whereas regression testing
is testing on a deeper level. In integration testing, individual units are combined
and tested together as a group. Most of the participants (91.67%) believe that
the most effective combination of testing techniques before the system will be
delivered to the production is the smoke and regression testing. Only 1.98% gave
a positive answer for integration testing, and 6.35% would prefer a combination of
all (smoke testing, regression testing and integration testing), with no participant
providing any other specific combination. However, the majority of participants
is currently not using this combination: 89.3% are not using smoke testing along
with regression testing before production, 9.9% do and the remaining 0.8% were
not sure or do not know.

4.5 Industrial Use Case

The combination of smoke and regression testing techniques was employed in
the framework of an industrial use case in the local industry in Cyprus for a
total duration of two months and a half. The use case concerns the testing of a
web application in the healthcare domain. The organization uses development
sprints and was initially employing only smoke testing. We are not providing
however, more information on the organization and the specific system, as the
organization asked for the anonymous use of the data. In order to examine the
combination of techniques, both smoke and regression testing were used for 5
consecutive sprints. We run a t-test to examine whether there is any difference in
the number of defects detected, when the system was delivered to the customer,
before and after the use of the combined testing. In the total of 31 sprints, we
observed that the difference in the results is statistically significant (p=0.000)
with considerably less defects being detected when the combination of testing
techniques is used (Table 3). In order to examine whether the number of changes



Examining the Current State of System Testing Methodologies 247

coming from development affects the number of defects detected (since some
sprints contain more changes than others), we used Pearson correlation, but
no correlation was detected (r=0.052, p=0.782), indicating that this is not a
parameter that affects our results. Thus, this combination of testing techniques is
very effective for the QA team, in order to identify the defects before the system
will be deployed on production environment, that is an expected outcome as
testing is strengthened.

Table 3. Difference in the number of defects in the industrial use case.

Testing technique N |Mean |Std. dev.
Smoke testing only 16 | 263.81 | 90.385
Smoke and regression testing | 5| 55.2 | 13.989

4.6 Limitations

Our study is affected by external validity, referring to the extend we can gener-
alize our findings. Our dataset is limited to 252 participants and expresses their
views, whereas participants come from a limited number of countries (11 coun-
tries). Analyzing the state of testing techniques in other countries or populations
may provide different results. Construct validity, i.e. the degree to which a test
measures what it claims to be measuring, may have been affected by having
specific views represented more in the data collected. More than one individuals
from the same organization may have participated in the survey, affecting thus
the overall results as they might contain in a larger degree the views of specific
organizations. Although different testing techniques were mentioned in the ques-
tionnaire and were indicated by the participants (e.g. performance testing), we
focused on the combination of specific testing techniques (i.e. smoke, regression
and integration testing). Participants did not mention other combinations that
could decrease the detection of defects, but mentioning specific techniques may
have influenced their answer, having thus a negative effect on conclusion validity
(the degree to which conclusions about the relationship among variables based
on the data are correct). Finally, our study is not affected by internal validity.

5 Conclusions

In this paper, we have presented the main results on a survey on system testing
methodologies that focused on identifying which testing techniques are used,
whether they are affected by the experience of the participants or by the lifecycle
model used, as well as observing other common testing parameters, such as
whether requirements are used for the creation of the test cases and the levels
used to categorize defects. We have applied some results of the survey that
refer to the combination of smoke and regression testing by the QA team in
the framework of an industrial use case. The main conclusions drawn can be
summarized to the following:



248 R. Sophocleous and G. M. Kapitsaki

— Not many organizations are using requirements to create their test cases.
39.7% of participants are using half of the requirements, but as revealed also
via the interviews the test cases are restricted to testing positive paths that
may not provide the optimal results, as negative paths are neglected.

— Most organizations are using three levels to categorize defects but there is
still a large number of organizations not giving appropriate importance to
using more than one levels for the defects.

— In terms of testing techniques, various are being used in different phases of the
development process. Ad-hoc testing is used by the majority of participants
(52.8%), although it is usually not the only technique used. Some important
types of testing, such as security testing and stress testing, appear to be less
common (used by 14.7% and 8.3% of participants respectively).

— The choice of some testing techniques is affected by the years of experience of
the expert or by the lifecycle model used, but since the participants number
in each category is relatively small the observations drawn about these factors
cannot be regarded conclusive.

— The combined use of smoke and regression testing can have a positive influ-
ence on the decrease of the number of defects detected by the customer and
one main take-away message for organizations is to introduce this combina-
tion in their testing process by the QA team.

References

1. Andreasen, E., et al.: A survey of dynamic analysis and test generation for javascript.
ACM Comput. Surv. (CSUR) 50(5), 1-36 (2017)

2. Causevic, A., Shukla, R., Punnekkat, S., Sundmark, D.: Effects of negative testing
on TDD: an industrial experiment. In: Baumeister, H., Weber, B. (eds.) XP 2013.
LNBIP, vol. 149, pp. 91-105. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38314-4.7

3. Kobrosly, W., Vassiliadis, S.: A survey of software functional testing techniques. In:
Proceedings of the IEEE Southern Tier Technical Conference, pp. 127-134. IEEE
(1988)

4. Lee, J., Kang, S., Lee, D.: Survey on software testing practices. IET Softw. 6(3),
275-282 (2012)

5. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, Hoboken
(2011)

6. PractiTest: State of testing survey 2019. https://www.practitest.com/resource/
state-of-testing-report-2019/

7. Rosero, R.H., Gémez, O.S., Rodriguez, G.: 15 years of software regression testing
techniques—a survey. Int. J. Softw. Eng. Knowl. Eng. 26(05), 675689 (2016)

8. Whalen, M.W., Rajan, A., Heimdahl, M.P., Miller, S.P.: Coverage metrics for
requirements-based testing. In: Proceedings of the 2006 International Symposium
on Software Testing and Analysis, pp. 25-36 (2006)


https://doi.org/10.1007/978-3-642-38314-4_7
https://doi.org/10.1007/978-3-642-38314-4_7
https://www.practitest.com/resource/state-of-testing-report-2019/
https://www.practitest.com/resource/state-of-testing-report-2019/

Examining the Current State of System Testing Methodologies 249

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

Abrahamsson, Pekka 195
AlQaisi, Raid 20

Baldassarre, Maria Teresa 223
Barroca, Leonor 20
Bastos, Ricardo 39
Binamungu, Leonard Peter 87

Caivano, Danilo 223
Chita, Pritam 3
Conte, Tayana 73
Cruickshank, Peter 3

Embury, Suzanne M. 87

Fucci, Davide 223

Gonzalez-Huerta, Javier 145
Graziotin, Daniel 162
Gregory, Peggy 20

Gren, Lucas 178

Hallmann, Daniel 103
Heinecke, Christoph 162

Jantunen, Marianna 195
Jordan, Christian 132

Kapitsaki, Georgia M. 240
Kemell, Kai-Kristian 195
Konstantinou, Nikolaos 87
Krancher, Oliver 56

Author Index

Lindman, Magdalena 178

Marczak, Sabrina 39, 73
Melegati, Jorge 211
Mikalsen, Marius 115
Moe, Nils Brede 115, 145

Parizi, Rafael 73
Prestes, Matheus 73

Radtke, Dirk 132
Richards, Kendall 3
Romano, Simone 223

Salerno, Larissa 39
Scanniello, Giuseppe 223
Schon, Eva-Maria 132
Sharp, Helen 20
Signoretti, Ingrid 39
Smite, Darja 145

Smith, Colin 3
Sophocleous, Rafaela 240
Spiegler, Simone V. 162
Strode, Diane E. 20

Vakkuri, Ville 195

Wagner, Stefan 162
Wang, Xiaofeng 211



	Preface
	Organization
	Contents
	Agile Adoption
	Agile Implementation and Expansive Learning: Identifying Contradictions and Their Resolution Using an Activity Theory Perspective
	1 Introduction
	2 Background and Related Work
	2.1 Activity Theory Based Framework
	2.2 Defining an Activity
	2.3 Activities in Agile Delivery
	2.4 Congruences and Collaborative Activity

	3 Case Organisation and Study Design
	4 Findings
	4.1 Contradictions
	4.2 Congruences and Stabilizations
	4.3 Collaborative Activity

	5 Discussion and Conclusion
	References

	Onboarding: How Newcomers Integrate into an Agile Project Team
	1 Introduction
	2 Background
	2.1 Bauer’s Onboarding Framework

	3 Method
	4 Findings
	4.1 The History and Nature of the Agile Team
	4.2 Onboarding Practices
	4.3 Onboarding Challenges for the Newcomers and the Agile Project Team

	5 Discussion
	6 Conclusion
	References

	Agile Practices
	Combining User-Centered Design and Lean Startup with Agile Software Development: A Case Study of Two Agile Teams
	1 Introduction
	2 Research Method
	2.1 Case Setting
	2.2 Data Collection
	2.3 Data Analysis

	3 Results
	3.1 Product Developing Under a New Perspective
	3.2 Methodological Aspects

	4 Discussion
	5 Related Work
	6 Conclusion, Limitations, and Future Work
	References

	Agile Software Development Practices and Success in Outsourced Projects: The Moderating Role of Requirements Risk
	1 Introduction
	2 Theory Background
	2.1 Software Development as Knowledge Integration
	2.2 Agile Practices for Within-Vendor and Client-Vendor Knowledge Integration

	3 Hypotheses
	3.1 Continuous Integration
	3.2 Continuous Analysis
	3.3 Joint Decision Making

	4 Methods
	4.1 Data Collection
	4.2 Instrument Development, Validation, and Estimation

	5 Results
	6 Discussion
	6.1 Contributions
	6.2 Strengths and Limitations

	References

	On the Use of Design Thinking: A Survey of the Brazilian Agile Software Development Community
	1 Introduction
	2 Earlier Studies on Agile and Design Thinking
	3 Research Setting
	3.1 Planning, Design and Prior Validation
	3.2 Execution

	4 Results
	4.1 The Respondents' Profiles
	4.2 DT Models, Techniques, and Tools
	4.3 Purposes, Contexts, Benefits and Difficulties to Using DT
	4.4 Discussion

	5 Concluding Remarks and Perspectives
	References

	Characterising the Quality of Behaviour Driven Development Specifications
	1 Introduction
	2 Related Work
	3 BDD Suite Quality Principles
	3.1 Aspects of Quality in BDD Specifications
	3.2 Principle of Conservation of Steps
	3.3 Principle of Conservation of Domain Vocabulary
	3.4 Principle of Elimination of Technical Vocabulary
	3.5 Principle of Conservation of Proper Abstraction

	4 Community Support for the BDD Quality Principles
	4.1 Survey Design
	4.2 Respondents and Their Demographics
	4.3 Survey Data Analysis
	4.4 Survey Results
	4.5 Discussion and Threats to Validity

	5 Conclusions
	References

	.28em plus .1em minus .1em``I Don't Understand!'': Toward a Model to Evaluate the Role of User Story Quality
	1 Introduction
	2 Research Model
	3 Method
	4 Preliminary Evaluation and Conclusions
	References

	Large-Scale Agile
	Large-Scale Agile Transformation: A Case Study of Transforming Business, Development and Operations
	1 Introduction
	2 Background
	2.1 The Challenges of Large-Scale Agile Transformation
	2.2 Transforming Business, Development and Operations

	3 Research Design and Method
	3.1 Data Collection and Analysis

	4 Results
	4.1 Diagnosing
	4.2 Unfiltered Access to Customer Insight and Aligning Strategies
	4.3 Testing, Implementing and New Improvement
	4.4 Next Steps
	4.5 Evaluating of Organizational Agility Using the Agility Framework of Worley

	5 Discussion
	5.1 Limitation and Future Research

	6 Conclusion
	References

	Improving Risk Management in a Scaled Agile Environment
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Study Context and Research Setting
	3.2 Data Collection and Analysis

	4 Results
	4.1 Continuous Product Development vs. Cross-Team Project
	4.2 Gaps and Measurements Related to Risk Management
	4.3 Interface Cross-Team Project and Continuous Product Development
	4.4 Tooling for Risk Management
	4.5 Project Setup and Management

	5 Discussion and Limitations
	6 Conclusion
	References

	The Business of Agile
	“When in Rome, Do as the Romans Do”: Cultural Barriers to Being Agile in Distributed Teams
	1 Introduction
	2 Background and Related Work
	2.1 Agile Ways of Working and Organizational Culture
	2.2 Agile Adoption in Asian Countries

	3 Research Methodology
	3.1 Empirical Background
	3.2 Data Collection and Analysis
	3.3 Limitations and Threats to Validity

	4 Results
	4.1 Behavior Impeding Agile Ways of Working
	4.2 Behavior in Five Distributed Teams

	5 Discussion
	5.1 Cultural Barriers Impeding the Agile Ways of Working
	5.2 Cultural Integration of Offshore Members from a Non-agile Organization

	6 Conclusions
	References

	A Quantitative Exploration of the 9-Factor Theory: Distribution of Leadership Roles Between Scrum Master and Agile Team
	1 Introduction
	2 Related Work
	2.1 Team Maturity
	2.2 The Changing Scrum Master Role

	3 Method
	3.1 Company Context and Participants
	3.2 Measurement
	3.3 Data Collection
	3.4 Pilot Study
	3.5 Analysis

	4 Results
	4.1 Scrum Master
	4.2 Agile Team
	4.3 Distribution of the 9 Factors Between Scrum Master and Agile Team

	5 Discussion
	6 Practical Implications
	7 Limitations and Future Work
	References

	What an Agile Leader Does: The Group Dynamics Perspective
	1 Introduction
	2 Method
	2.1 Procedure
	2.2 Participants
	2.3 Reflexivity
	2.4 Analysis

	3 Results
	3.1 Team Maturity
	3.2 Team Design
	3.3 Culture and Mindset

	4 Discussion
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	“This is Just a Prototype”: How Ethics Are Ignored in Software Startup-Like Environments
	1 Introduction
	2 Related Work: The Current State of AI Ethics
	3 Research Model
	4 Study Design
	4.1 Cases
	4.2 Data Collection
	4.3 Data Analysis

	5 Empirical Results
	5.1 Responsibility
	5.2 Transparency
	5.3 Accountability
	5.4 Summary of Findings

	6 Discussion
	7 Conclusions and Future Work
	References

	Hypotheses Elicitation in Early-Stage Software Startups Based on Cognitive Mapping
	1 Introduction
	2 Background and Related Work
	3 Research Method
	4 First-Phase Results
	5 Second-Phase Results
	6 Discussion
	7 Conclusions
	References

	Agile and Testing
	Results from a Replicated Experiment on the Affective Reactions of Novice Developers When Applying Test-Driven Development
	1 Introduction
	2 Background and Related Work
	3 Baseline Experiment
	3.1 Research Questions
	3.2 Participants and Artifacts
	3.3 Variables and Hypotheses
	3.4 Design and Execution
	3.5 Data Analysis and Results

	4 Replicated Experiment
	4.1 Participants
	4.2 Design and Execution

	5 Results
	6 Discussion
	7 Threats to Validity
	8 Conclusion
	References

	Examining the Current State of System Testing Methodologies in Quality Assurance
	1 Introduction
	2 Related Work
	3 Study Design
	4 Results and Discussion
	4.1 Demographics
	4.2 RQ1. Test Cases and Defects Categorization
	4.3 RQ2. Testing Techniques and Relevant Factors
	4.4 RQ3. Combination of Smoke and Regression Testing Before Production
	4.5 Industrial Use Case
	4.6 Limitations

	5 Conclusions
	References

	Author Index



